ISOMETER® IR155-4203/IR155-4204

Isolationsüberwachungsgerät für ungeerdete DC-Antriebssysteme (IT-Systeme) in Elektrofahrzeugen

Version V004

Gerätemerkmale

- Geeignet für 12-V- und 24-V-Systeme
- · Automatischer Geräteselbsttest
- Kontinuierliche Messung des Isolationswiderstandes 0...10 $\text{M}\Omega$
 - Die Ansprechzeit für den ersten ermittelten Isolationszustand (SST) beträgt < 2 s nach dem Einschalten der Versorgungsspannung
 - Die Ansprechzeit für den gemessenen Isolationswiderstand (DCP) beträgt < 20 s
- Automatische Anpassung an die bestehende Netzableitkapazität (≤ 1 µF)
- Erkennung von Erdschlüssen und Unterbrechung des Erdanschlusses
- Isolationsüberwachung von AC- und DC-Isolationsfehlern für ungeerdete Systeme (IT-Systeme) 0...1000 V
- Unterspannungserkennung für Spannungen unter 500 V (werksseitig einstellbar durch Bender)
- · Kurzschlusssichere Ausgänge für:
 - Fehlererkennung (High-Side-Ausgang)
 - Messwert (PWM 5...95 %) und Status
 (f = 10...50 Hz) bei High- oder invertiertem
 Low-Side-Treiber (M_{HS}/M_{LS}-Ausgang)
- · Schutzlackierung (SL 1307 FLZ)

Zulassungen

ACHTUNG

Beachten Sie die Vorsichtsmaßnahmen für den Umgang mit elektrostatisch gefährdeten Geräten.

Verwenden Sie die Geräte nur an diesbezüglich sicheren Arbeitsplätzen.

ACHTUNG

Das Gerät überwacht HOCHSPANNUNG. Vorsicht HOCHSPANNUNG in der Nähe des Gerätes.

Produktbeschreibung

Das ISOMETER® IR155-4203/IR155-4204 überwacht den Isolationswiderstand zwischen den isolierten, aktiven HV-Leitern eines elektrischen Antriebssystems ($U_n = DC \ 0 \ V...1000 \ V$) und der Messerde (Fahrzeugmasse \blacktriangleright Kl.31). Durch das patentierte Messverfahren wird der Isolationszustand auf der Gleichspannungs- und der Wechselspannungsseite eines elektrischen Antriebssystems überwacht. Vorhandene Isolationsfehler werden zuverlässig gemeldet, auch bei hohen Störbeeinflussungen, die durch Motorsteuerungsprozesse, Beschleunigung, Energierückgewinnung etc. verursacht werden können.

Aufgrund seines geringen Platzbedarfs und der optimierten Messtechnik ist das Gerät bestens für den Einsatz in Hybridfahrzeugen oder vollelektrischen Fahrzeugen geeignet. Das Gerät erfüllt die erhöhten Anforderungen an die Umweltbedingungen im Automobilbereich (z. B. Temperaturen und Erschütterungen, EMV...).

Die Fehlermeldungen (Isolationsfehler am HV-System, Anschluss- oder Gerätefehler des Isolationsüberwachungsgerätes) werden über die integrierte, galvanisch getrennte Schnittstelle zur Verfügung gestellt (High-Side-Treiber oder Low-Side-Treiber). Die Schnittstelle besteht aus einem Statusausgang (*OK*_{HS}-Ausgang) und einem Messwertausgang (*M*_{HS}/*M*_{LS}-Ausgang). Der Statusausgang signalisiert Fehler oder, dass das System fehlerfrei ist, d. h. den "Gutzustand", wie das Diagramm "Arbeitsweise PWM-Treiber" auf Seite 5 zeigt. Der Messwertausgang gibt den aktuellen Isolationswiderstand aus. Weiterhin ist es möglich, zwischen unterschiedlichen Fehlermeldungen und Gerätezuständen zu unterscheiden, die Grundfrequenz kodiert sind.

Funktion

Das ISOMETER® IR155-4203/IR155-4204 erzeugt eine pulsförmige Messspannung, welche dem IT-System über die Klemmen L+/L- und E/KE überlagert wird. Der aktuell gemessene Isolationszustand steht als pulsweitenmoduliertes (PWM) Signal an den Klemmen $M_{\rm HS}$ (bei IR155-4204) oder $M_{\rm LS}$ (bei IR155-4203) zur Verfügung. Die Verbindung zwischen den Klemmen E/KE und der Fahrzeugmasse (\blacktriangleright Kl.31) wird ständig überwacht. Aus diesem Grund ist es erforderlich, zwei getrennte Leitungen von den Klemmen E bzw. KE zur Fahrzeugmasse zu verlegen.

Die Anschlussüberwachung der Erdungsklemmen E/KE ist spezifiziert für $R_F \le 4 \, M\Omega$ wenn das ISOMETER® so angeschlossen ist, wie es in der Anwendungsdarstellung auf Seite 3 zu sehen ist.

Nach dem Zuschalten der Versorgungsspannung führt das Gerät automatisch eine Initialisierung durch und startet die SST-Messung. Innerhalb von maximal zwei Sekunden stellt das ISOMETER® den ersten geschätzten Isolationswert bereit. Anschließend beginnt die DCP-Messung (>> kontinuierliche Messmethode). Fehler in den Anschlussleitungen oder Funktionsfehler werden automatisch erkannt und gemeldet.

Während des Betriebes wird automatisch alle fünf Minuten ein Selbsttest durchgeführt. Die Schnittstellen werden durch diese Selbsttests nicht beeinflusst.

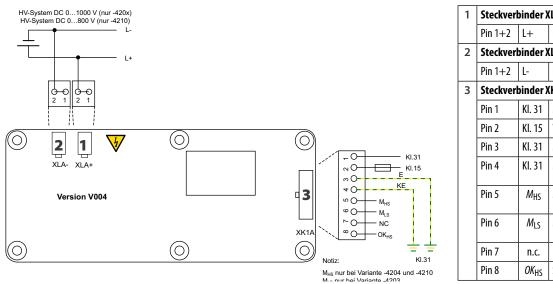
Wenn $R_F > 4$ $M\Omega$ und die Versorgungsklemmen (Kl.15/Kl.31) nicht galvanisch vom Masseanschluss (Kl.31) getrennt sind, arbeitet die Anschlussüberwachung der Erdungsklemmen (Kl.15/Kl.31) möglicherweise nicht bestimmungsgemäß.

Normen

DIN EN 60068-2-27

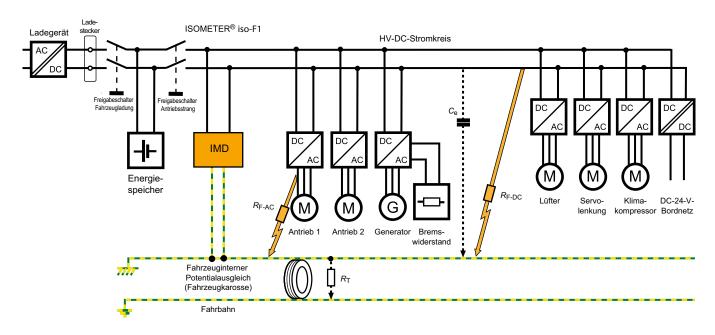
nd Vorschriften* *	Normativer Ausschluss
2014-12	Das Gerät hat ein Automotive-Prüfverfahren
2010-06	in Kombination mit übergeordneten
2004-04	kundenspezifischen Anforderungen durch-
2011-12	laufen gem. ISO16750-x.
2006-11	Um den Anforderungen der Norm
2006-08	3
2010-03	IEC 61557-8 zu entsprechen, muss die
2010-04	Funktion einer optischen Warnung sowie
vision 5)	eine Gerätetestfunktion durch den
2009/19/EG/EC	Kunden realisiert werden.
Z/AD:2010	Bei Spannungen über 50 V bietet das Gerät
Db:2006	keinen Load-Dump-Schutz. Ein zusätzlicher
Nb:2010	zentraler Schutz ist notwendig.
Fh:2009	_
	2014-12 2010-06 2004-04 2011-12 2006-11 2006-08 2010-03 2010-04 vision 5) 2009/19/EG/EC Z/AD:2010 Db:2006 Nb:2010

Ea:2010



Abkürzungen

DCP Direct Current Pulse (kontinuierliche Messmethode)


SST Speed Start Measuring (Schnellstart-Messung)

Anschlussschaltbilder

1	Steckverbinder XLA+			
	Pin 1+2	L+	Netzspannung	
2	Steckverl	verbinder XLA-		
	Pin 1+2	L-	Netzspannung	
3	Steckverl	Steckverbinder XK1A		
	Pin 1	Kl. 31	Masseanschluss/Elektronikmasse	
	Pin 2	Kl. 15	Versorgungsspannung	
	Pin 3	Kl. 31	Masseanschluss	
	Pin 4	Kl. 31	Masseanschluss (separate Leitung)	
	Pin 5	M _{HS}	Messwertausgang, PWM (High-Side)	
	Pin 6	M _{LS}	Messwertausgang, PWM (Low-Side)	
	Pin 7	n.c.		
	Pin 8	<i>OK</i> _{HS}	Statusausgang (High-Side)	

Typische Anwendung

Technische Daten

Isolationskoordination nach IEC 60664-1	
Sichere Trennung (verstärkte Isolierung)	
	-/L-) – (Kl. 31, Kl. 15, E, KE, M _{HS} , M _{LS} , <i>OK</i> _{HS})
Spannungsprüfung	AC 3500 V/1 min
Versorgung/Überwachtes IT-System	
Versorgungsspannung U_{S}	DC 1036 V
Max. Betriebsstrom / _S	150 mA
Max. Strom I _k	2 A
IIV Cooppus ash araish (L /L.) //	6 A/2 ms Einschaltstrom
HV-Spannungsbereich (L+/L-) <i>U</i> n	AC 01000 V (Spitzenwert) 0660 V RMS (10 Hz1 kHz)
	DC 01000 V
Leistungsaufnahme	< 2 W
Ansprechwerte	
Ansprechwert Hysterese (DCP)	25 %
Ansprechwert Ran	100 kΩ1 ΜΩ
Unterspannungserkennung	0500 V
Messbereich	
Messbereich	010 ΜΩ
	500 V Standardeinstellung: 0 V (inaktiv)
Relative Messunsicherheit bei SST (≤ 2 s)	Gut > $2* R_{an}$; Schlecht < $0.5* R_{an}$
Relative Messunsicherheit bei DCP (Standardeinstellung 100 kΩ)	085 kΩ ► ±20 kΩ 100 kΩ10 MΩ ► ±15 %
(Standardenistending 100 kb2) Relative Messunsicherheit Ausgang M (Grundfr	
nciative messaristenerinere nasgang in (Granan	(10 Hz; 20 Hz; 30 Hz; 40 Hz; 50 Hz)
Relative Messunsicherheit bei	
	100 V ► ±10 %; bei $U_n \ge 300 \text{ V}$ ► ±5 %
Relative Messunsicherheit (SST)	"Gut-Zustand" $\geq 2 R_{an}$ "Schlecht-Zustand" $\leq 0.5 R_{an}$
	"Schlecht-Zustahu ≥ 0,5 han
No Insulation fault (high)	
1	<i>y</i> 1
Insulation fault (low)	
50kΩ ^{Re}	esponse value = 200 kΩ 10 MΩ
Relative Messunsicherheit bei DCP	100 kΩ10 MΩ \pm 15 %
	100 k Ω 1,2 M Ω \blacktriangleright ±15 % bis ±7 %
	1,2 MΩ ▶ ±7 %
	1,210 MΩ \blacktriangleright ±7% bis ±15 % 10 MΩ \blacktriangleright ±15 %
†	10 MW F ±13 %
+15% +7%	
17%	
-7%	
-15%	
100kg	Ι Ι Ω 1.2MΩ 10MΩ
Absolute Messunsicherheit	085 kΩ ▶ ±20 kΩ
+1.5MΩ †	
÷	
10410	
+84kΩ	
+15kΩ	
0	
-15kΩ -20kΩ	
-84kΩ	
Γ	

Zeitverhalten Ansprechzeit tan (OKHS; SST) $t_{an} \le 2 \text{ s (typ.} < 1 \text{ s bei } U_n > 100 \text{ V})$ Ansprechzeit t_{an} (OK_{HS}; DCP) (bei Umschaltung von $R_{\rm F}=10~{\rm M}\Omega$ auf $R_{\rm an}/2$; bei $C_{\rm e}=1~{\rm \mu}{\rm F}$; $U_{\rm n}={\rm DC}~1000~{\rm V})$ $t_{an} \le 20 \text{ s (bei } F_{ave} = 10^*)$ $t_{an} \le 17.5 \text{ s (bei } F_{ave} = 9)$ $t_{\rm an} \le 17.5 \, {\rm s} \, ({\rm bei} \, F_{\rm ave} = 8)$ $t_{an} \le 15 \text{ s (bei } F_{ave} = 7)$ $t_{\rm an} \leq 12.5 \, {\rm s} \, ({\rm bei} \, F_{\rm ave} = 6)$ $t_{an} \le 12,5 \text{ s (bei } F_{ave} = 5)$ $t_{an} \le 10 \text{ s (bei } F_{ave} = 4)$ $t_{an} \le 7.5 \text{ s (bei } F_{ave} = 3)$ $t_{an} \le 7.5 \text{ s (bei } F_{ave} = 2)$ $t_{an} \le 5 \text{ s (bei } F_{ave} = 1)$ während des Selbsttests $t_{\rm an}$ + 10 s Rückmesszeit tab (OKHS; DCP) (bei Umschaltung von $R_{an}/2$ auf $R_F = 10$ M Ω ; bei $C_e = 1$ μ F; $U_n = DC$ 1000 V $t_{ab} \le 40 \text{ s (bei } F_{ave} = 10)$ $t_{ab} \le 40 \text{ s (bei } F_{ave} = 9)$ $t_{ab} \le 33 \text{ s (bei } F_{ave} = 8)$ $t_{\rm ab} \le 33 \, { m s} \, ({ m bei} \, F_{ m ave} = 7)$ $t_{ab} \le 33 \text{ s (bei } F_{ave} = 6)$ $t_{ab} \le 26 \text{ s (bei } F_{ave} = 5)$ $t_{ab} \le 26 \text{ s (bei } F_{ave} = 4)$ $t_{ab} \le 26 \text{ s (bei } F_{ave} = 3)$ $t_{\rm ab} \le 20 \, {\rm s} \, ({\rm bei} \, F_{\rm ave} = 2)$ $t_{\rm ab} \leq 20 \, {\rm s} \, ({\rm bei} \, F_{\rm ave} = 1)$ während eines Selbsttests $t_{\rm ab}$ + 10 s Dauer Selbsttest 10 s (alle 5 Minuten; ist zu $t_{\rm an}/t_{\rm ab}$ hinzuzufügen)

Messkreis

Netzableitkapazität C _e	≤ 1 µF
Verkleinerter Messbereich und erhöhte Messzeit bei Ce	> 1 μF
(z. B. ma	nx. Bereich 1 MΩ @ 3 μF,
$t_{\rm an} = 68 \rm s bei Umschaltung$	y von R_F 1 MΩ auf R_{an} /2)
Messspannung U_{M}	±40 V
Messspannung $I_{\rm M}$ bei $R_{\rm F} = 0$	±33 μA
Impedanz Z _i bei 50 Hz	≥ 1,2 MΩ
DC-Innenwiderstand R _i	≥ 1,2 MΩ

^{*} $F_{ave} = 10$ wird für Elektro-/Hybridfahrzeuge empfohlen

85kΩ100kΩ

1.2ΜΩ

10ΜΩ

-1.5MΩ 0kΩ

Ausgang

Messausgang (M)

M_{HS} schaltet auf U_S - 2 V (4204)

(externer Pull-Down-Widerstand nach Kl. 31 erforderlich 2,2 kΩ)

 M_{LS} schaltet auf Kl. 31 + 2 V (4203)

(Externer Pull-Up-Widerstand nach Kl. 15 erforderlich 2,2 k Ω

0 Hz ► Hi > Kurzschluss zu U_b + (Kl. 15); Low > IMD aus oder Kurzschluss zu Kl. 31

10 Hz ► Normalzustand Isolationsmessung DCP; startet zwei Sekunden nach dem Einschalten; Erste erfolgreiche Isolationsmessung bei ≤ 17.5 s PWM aktiv 5...95 %

20 Hz ➤ bei Unterspannung Isolationsmessung DCP (kontinuierliche Messung); startet zwei Sekunden nach dem Einschalten; PWM aktiv 5...95 % Erste erfolgreiche Isolationsmessung bei ≤ 17,5 s Unterspannungserkennung 0...500 V

(durch Bender konfigurierbar)

30 Hz ➤ Schnellstart-Messung
Isolationsmessung (nur gut-/schlecht-Abschätzung)

startet direkt nach dem Einschalten ≤ 2 s;

PWM 5...10 % (gut) und 90...95 % (schlecht)

40 Hz ► Gerätefehler

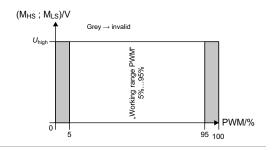
Gerätefehler erkannt; PWM 47,5...52,5 %

50 Hz ► Anschlussfehler Erde Fehler erkannt an der Erdanschlussleitung (Kl. 31) PWM 47,5...52,5 %

Statusausgang (OK_{HS})

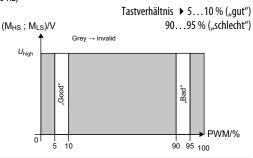
 OK_{HS} schaltet auf U_S-2 V (externer Pull-Down-Widerstand nach Kl. 31 erforderlich 2,2 k Ω)

High ► Kein Fehler; R_F > Ansprechwert
Low ► Isolationswiderstand ≤ Ansprechwert erfasst;
Gerätefehler; Erdanschlussfehler
Unterspannung erkannt oder Gerät abgeschaltet


Funktionsprinzip PWM-Treiber

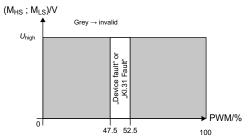
Zustand "Normal" und "Unterspannung erkannt" (10 Hz; 20 Hz)

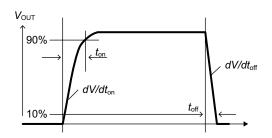
Tastverhältnis 5 % = > 50 MΩ (∞) Tastverhältnis 50 % = 1200 kΩ Tastverhältnis 95 % = 0 kΩ


$$R_{\rm F} = \frac{90 \% \times 1200 \text{ k}\Omega}{4c_{\rm obs}^{-5 \%}} - 1200 \text{ k}\Omega$$

dc_{meas} = gemessenes Tastverhältnis (5 %...95 %)

Funktionsprinzip PWM-Treiber


Zustand "SST" (30 Hz)


Funktionsprinzip PWM-Treiber

Zustand "Gerätefehler" und "Kl.31-Fehler" (40 Hz; 50 Hz;)

Tastverhältnis ▶ 47,5...52,5 %

Laststrom /L	80 mA
Einschaltzeit ▶ bis 90 % V _{out}	max. 125 μs
Einschaltzeit ▶ bis 10 % V _{out}	max. 175 μs
Spannungsanstiegsgeschwindigkeit ▶ 1030 % V _{out}	max. 6 V/μs
Spannungsabfallgeschwindigkeit ▶ 7040 % V _{out}	max. 8 V/μs
Zeitverhalten 4204 (invers zu 4203)	

FMV

EIVIV	
Load-Dump-Schutz	< 50 V
Messverfahren	Bender-DCP-Technik
Faktor-Mittelwertbildung	
Favo (Ausgang M)	110 (werksseitig eingestellt: 10)

ESD-Schutz

Kontaktentladung — direkt an den Klemmen	≤ 10 kV
Kontaktentladung – indirekt über die Umgebung	≤ 25 kV
Luftentladung — Umgang mit Leiterplatte	≤ 6 kV

Anschluss

Steckverbinder	Samtec Mini Mate Housing, IPD1-08-S-K
	(KI. 31B, KI.15, KE, E, M _{HS} , M _{LS} , OK _{HS})
	Molex Mini Fit Jr. Housing, 39-01-2025, (L+, L-)
Crimp-Kontakte	Samtec Mini Mate Gold, CC79R2024-01-L, AWG 2024
	Molex Mini Fit Jr. Gold, 39-00-0089, AWG 16

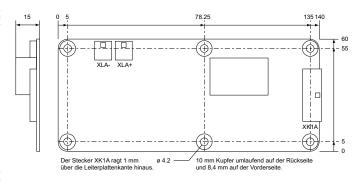
Sonstiges

Erforderliche Crimpzange (Molex)	2002182200
Erforderliche Crimpzange 20 – 30 AWG (Samtec)	CAT-HT-179-2030-13
Betriebsart/Einbaulage	Dauerbetrieb/beliebig
Temperaturbereich	-40+105 ℃
Spannungsausfall	≤ 2 ms
Entflammbarkeitsklasse nach	UL 94 V-0

Befestigung

M4 Metallschrauben mit Unterlegscheiben zwischen dem Schraubenkopf und Leiterplatte. Torx, T20 mit einem maximalen Anzugsdrehmoment von 4 Nm für die Schrauben. Weiterhin maximal 10 Nm Andruck auf die Leiterplatte an den Befestigungsstellen.

Montage- und Steckverbindersätze sind nicht im Lieferumfang enthalten, aber als Zubehör erhältlich. Der maximale Durchmesser der Befestigungspunkte beträgt 10 mm.


Achten Sie bei der Befestigung des Gerätes auf eine ausreichende Isolierung zwischen dem Gerät und dem Fahrzeug bzw. den Befestigungspunkten (mind. 11,4 mm zu anderen Teilen). Wenn das Gerät auf einer Metalloberfläche oder auf leitendem Untergrund befestigt wird, muss dieser an Erdpotenzial liegen (Kl.31; Fahrzeugmasse).

Durchbiegung	max. 1 % der Länge bzw. der Breite der Leiterplatte
Beschichtung	Dickschicht-Lack
Gewicht	52 q ±2 q

Maßbild

Maßangaben in mm

Leiterplatten-Maße (L x B x H) 140 x 60 x 15 mm

Bestellangaben

Parameter	Ansprechwert R _{an}	F ave	Unterspannungs- erkennung	Messwertausgang	Тур	ArtNr.
Fest voreingestellt	100 kΩ	10	300 V	Low-Side	IR155-4203	B91068141
		10	10	10	0 V (inaktiv)	High-Side
kundenspezifisch	100 kΩ1 MΩ	110	0.1/ 500.1/	Low-Side	IR155-4203	B91068141C
einstellbar			0 V500 V	High-Side	IR155-4204	B91068142C

Zubehör

Bezeichnung	ArtNr.
Befestigungs-Set	B91068500
Steckverbinder-Set IR155-42xx	B91068502

Bestellbeispiel

IR155-4204-100k Ω -0V + B91068142 IR155-4204-200k Ω -100V + B91068142C

Die Bestellung muss immer die Parameter bezüglich des Ansprechwertes und der Unterspannungsschwelle beinhalten.

Bender GmbH & Co. KG

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

© Bender GmbH & Co. KG, Germany Änderungen vorbehalten! Die angegebenen Normen berücksichtigen die bis zum 06.2024 gültige Ausgabe, sofern nicht anders angegeben.