

ISOMETER® iso685(W)-x-P

Isolationsüberwachungsgerät mit integriertem Prüfstromgenerator für IT-Wechselspannungssysteme mit galvanisch verbundenen Gleichrichtern und Umrichtern und für IT-Gleichspannungssysteme

ISOMETER® iso685(W)-x-P

Isolationsüberwachungsgerät mit integriertem Prüfstromgenerator für IT-Wechselspannungssysteme mit galvanisch verbundenen Gleichrichtern und Umrichtern und für IT-Gleichspannungssysteme

Bestimmungsgemäße Verwendung

Das ISOMETER® dient zur Überwachung des Isolationswiderstandes von ungeerdeten AC/DC-Hauptstromkreisen (IT-Systeme).

Die in AC/DC-Systemen vorhandenen gleichstromgespeisten Komponenten haben keinen Einfluss auf das Ansprechverhalten. Durch die separate Versorgungsspannung ist auch die Überwachung eines spannungslosen Systems möglich. Die maximal zulässige Netzableitkapazität ist in den Technischen Daten beschrieben.

Zur bestimmungsgemäßen Verwendung gehören auch

- das Beachten aller Hinweise aus dem Handbuch und
- die Einhaltung der Prüfintervalle.

Um die Forderungen der jeweiligen Normen zu erfüllen, ist das Gerät an die Anlagen- und Einsatzbedingungen vor Ort anzupassen. Beachten Sie die in den technischen Daten angegebenen Grenzen des Einsatzbereichs.

Keine unzulässigen Veränderungen am Gerät vornehmen. Nur Ersatzteile oder Zusatzeinrichtungen verwenden, die vom Hersteller verkauft oder empfohlen werden.

Warnhinweis: Diese Einrichtung ist nicht dafür vorgesehen, in Wohnbereichen verwendet zu werden, und kann einen angemessenen Schutz des Funkempfangs in solchen Umgebungen nicht sicherstellen.

Eine andere oder darüber hinausgehende Benutzung gilt als nicht bestimmungsgemäß.

Gerätemerkmale

Merkmale iso685-x-P

- ISOMETER® für IT-Wechselspannungssysteme mit galvanisch verbundenen Gleichrichtern oder Umrichtern und für IT-Gleichspannungssysteme (IT = ungeerdete Netze)
- Automatische Anpassung an die vorhandene Netzableitkapazität
- Kombination von **AMP**^{PLUS} und weiterer profilabhängiger Messverfahren
- Zwei getrennt einstellbare Ansprechwert-Bereiche von 1 k Ω bis 10 M Ω
- Grafisches LC-Display
- Anschlussüberwachung (Überwachung der Messleitungen)
- · Automatischer Geräteselbsttest
- Grafische Darstellung des Isolationsverlaufes über die Zeit (isoGraph)
- Historienspeicher mit Echtzeituhr (3-Tage-Puffer) zur Speicherung von maximal 1023 Alarmmeldungen mit Datum und Uhrzeit
- Strom- oder Spannungsausgang 0(4)...20 mA, 0...400 μA, 0...10 V, 2...10 V (galvanisch getrennt) analog zum gemessenen Isolationswert des Netzes
- Frei programmierbare digitale Ein- und Ausgänge
- Ferneinstellung über das Internet oder Intranet (Webserver / Option: COMTRAXX® Gateway)
- Ferndiagnose über das Internet (durch den Bender-Service)
- isoData: permanente unterbrechungsfreie Datenübertragung
- RS-485/BS (Bender-Sensor-Bus) zum Datenaustausch mit anderen Bender-Komponenten mit Modbus RTU-Protokoll
- · BCOM, Modbus TCP und Webserver
- ISOnet: Interne Trennung des ISOMETER®s vom zu überwachenden IT-System (z. B. bei Kopplung mehrerer IT-Systeme)
- ISOnet-Vorrang: Dauerhafter Vorrang eines Gerätes im Netzverbund
- ISOloop: Sonderfunktion für Ringnetze (alle Netze sind gekoppelt)
- Prüfstrom-Generierung für die selektive Isolationsfehlersuche
- Anzeige der von EDS-Systemen selektiv lokalisierten Isolationsfehler
- Parametrierung von EDS-Systemen
- EDSsync: Synchrones Verteilen der EDS Triggerinformation in gekoppelten Netzen
- Kundenspezifische Texte für jeden Messkanal

Merkmale EDS44x

- Isolationsfehlersuche in AC, 3AC und DC-IT-Systemen
- Bis zu 12 Messstromwandler der Serie W, WR und WS können angeschlossen werden
- Ansprechempfindlichkeit Isolationsfehlersuche:

EDS440: 2...10 mA

EDS441: 0,2...1 mA

· Ansprechempfindlichkeit Differenzstrommessung:

EDS440: 0,1...10 A EDS441: 0,1...1 A

• Kommunikation der Komponenten über BS-Bus oder BB-Bus

Produktbeschreibung

Das ISOMETER® ist ein Isolationsüberwachungsgerät für IT-Systeme nach IEC 61557-8.

Es ist universell in AC-, 3(N)AC-, AC/DC- und DC-Systemen einsetzbar. In AC-Systemen können auch umfangreiche gleichstromgespeiste Anlagenteile vorhanden sein (z. B. Stromrichter, Umrichter, geregelte Antriebe).

Besonderheiten ISOMETER®-Varianten mit Frontpanel

Das ISOMETER® iso685-D... ist ein Gerät der iso685-Gerätefamilie mit integriertem Display.

Das ISOMETER® iso685-S... ist eine Sensorvariante der iso685-Gerätefamilie ohne Display. Es unterscheidet sich vom ISOMETER® iso685-D... einzig durch das nicht vorhandene Display. Das ISOMETER® iso685-S... muss in Kombination mit einem Frontpanel verwendet werden, da die Geräte über das Frontpanel bedient werden. Die Bedienung des Frontpanels gleicht der Bedienung der ISOMETER® mit integriertem Display.

An das Frontpanel darf ausschließlich die Sensorvariante (ISOMETER® iso685-S...) angeschlossen werden. Ein Anschluss an die Displayvariante (ISOMETER® iso685-D...) ist nicht möglich.

Funktionsbeschreibung

Das Isolationsüberwachungsgerät überwacht kontinuierlich den gesamten Isolationswiderstand eines IT-Systems während des Betriebs und löst einen Alarm aus, wenn ein eingestellter Ansprechwert unterschritten wird.

Zur Messung wird das Gerät zwischen dem IT-System (ungeerdetes Netz) und dem Schutzleiter (PE) angeschlossen und dabei dem Netz ein Messstrom im μA -Bereich überlagert, der von einer microcontroller-gesteuerten Messschaltung erfasst und ausgewertet wird. Die Messwert-Erfassungszeit ist abhängig von den gewählten Messprofilen, der Netzableitkapazität, dem Isolationswiderstand sowie eventuellen netzbedingten Störungen.

Die Einstellung der Ansprechwerte und sonstiger Parameter erfolgt über einen Inbetriebnahme-Assistenten, sowie über die verschiedenen Einstellmenüs mit Hilfe der Gerätetasten und einem grafischen LC-Display. Die gewählten Einstellungen werden in einem permanenten Speicher ausfallsicher gespeichert. Für die Einstellmenüs sowie die Meldungen auf dem Display können verschiedene Sprachen ausgewählt werden. Das Gerät verfügt über eine Uhr, mit deren Hilfe man Fehlermeldungen und Ereignisse in einem Historienspeicher mit Zeit- und Datumsstempel erfassen kann. Über ein Gerätepasswort können die vorgenommenen Einstellungen vor unbefugten Änderungen geschützt werden.

Für eine korrekte Funktionsweise der Anschlussüberwachung benötigt das Gerät die Einstellung der Netzform 3AC, AC oder DC und die vorgeschriebene Beschaltung der entsprechenden Anschlussklemmen L1/+, L2, L3/–.

Das Isolationsüberwachungsgerät iso685... ist in der Lage, in allen gängigen IT-Systemen (ungeerdete Netze) eine korrekte Isolationsmessung vorzunehmen. Durch die verschiedenen Anwendungen, Netzformen, Betriebsbedingungen, Einsatz von geregelten Antrieben, hohe Netzableitkapazitäten etc., ergeben sich unterschiedliche Anforderungen an die Messtechnik, um eine optimierte Ansprechzeit und Ansprechabweichung zu garantieren. Deshalb können verschiedene Messprofile ausgewählt werden, mit denen eine optimale Anpassung des Geräts vorgenommen werden kann.

Wird ein eingestellter Ansprechwert für Alarm 1 und/oder Alarm 2 unterschritten, schalten die zugehörigen Alarmrelais, die LEDs **ALARM 1** bzw. **ALARM 2** leuchten und das LC-Display zeigt den Messwert an (bei Isolationsfehlern im DC-System wird zusätzlich eine Trendanzeige für den fehlerbehafteten Leiter L+/L— angezeigt). Ist der Fehlerspeicher aktiviert, wird die Fehlermeldung gespeichert.

Durch Betätigung der **RESET**-Taste kann eine Isolationsfehlermeldung zurückgesetzt werden, vorausgesetzt der aktuell angezeigte Isolationswiderstand liegt zum Zeitpunkt des Rücksetzens mindestens 25 % über dem Ist-Ansprechwert.

Als zusätzliche Information werden auf dem Display die Signalqualität des Messsignales sowie die Aktualisierungszeit des Messwertes über Balkengrafiken angezeigt. Eine schlechte Signalqualität (1-2 Balken) kann auf ein falsch gewähltes Messprofil hinweisen.

Das ISOMETER® verfügt über interne Netztrennschalter, sodass ein Betrieb mehrerer ISOMETER® in gekoppelten IT-Systemen möglich wird. Dafür werden die ISOMETER® über einen Ethernet-Bus verbunden. Die integrierte ISOnet-Funktion sorgt dafür, dass immer nur ein ISOMETER® aktiv misst, während die anderen Teilnehmer sich eigenständig vom Netz trennen und im Ruhezustand auf die Messfreigabe warten.

Das ISOMETER® ist in der Lage sich mit anderen ISOMETER®n zu synchronisieren. Dadurch wird es möglich, kapazitiv gekopplte IT-Systeme ohne eine gegenseitige Beeinflussung zu überwachen.

Schnittstellen

- Kommunikationsprotokoll Modbus TCP
- Kommunikationsprotokoll Modbus RTU
- BCOM zur Kommunikation von Bender-Geräten über Ethernet
- BS-Bus zur Kommunikation von Bender-Geräten (RS-485)
- BB-Bus (Bender-Backbone-Bus)
- isoData zur Erfassung und Verwaltung von Messwerten
- Integrierter Webserver zum Auslesen der Messwerte und zur Parametrierung

Isolationsfehlersuche

Eine weitere Funktion des ISOMETER®s zusammen mit dem EDS ist die selektive Isolationsfehlersuche. Dazu erzeugt das ISOMETER® nach Unterschreiten des Ansprechwertes $R_{\rm anz}$ (**ALARM 2** LED) einen periodischen Prüfstrom. Dabei werden die Netzleiter abwechselnd über einen definierten Widerstand mit Erde verbunden. Der dadurch entstehende Prüfstrom ist abhängig von der Größe des vorhandenen Isolationsfehlers und der Netznennspannung. Er wird, je nach Einstellung vom ISOMETER®, begrenzt.

Mittels des EDS und der daran angekoppelten Messstromwandler wird der Isolationsfehler selektiv lokalisiert. Der Prüfstrom fließt vom Prüfstromgenerator über die spannungsführenden Leitungen auf dem kürzesten Weg zur Isolationsfehlerstelle. Von dort aus fließt er über den Isolationsfehler und den Leiter PE zum ISOMETER® zurück. Dieser Prüfstromimpuls wird von den im Isolationsfehlerpfad liegenden Messstromwandlern erkannt und durch das angeschlossene EDS gemeldet.

VORSICHT Fehlfunktionen durch zu hohen Prüfstrom an empfindlichen Anlagenteilen!

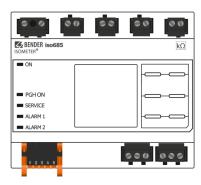
Durch den zwischen IT-System und Erde fließenden Prüfstrom kann es in empfindlichen Anlagenteilen, wie SPS oder Relais, zu Fehlsteuerungen kommen.

Stellen Sie sicher, dass die Höhe des Prüfstroms kompatibel mit der zu überwachenden Anlage ist.

Zur Isolationsfehlersuche muss eine Mindestspannung von 50 V im überwachten Netz vorhanden sein.

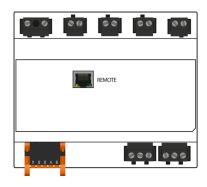
Für die Dauer der Isolationsfehlersuche ist die Isolationsfehlerüberwachung deaktiviert. Falls während der Isolationsfehlersuche der Prüfstrom unter den vom EDS messbaren Wert sinkt, wird die Isolationsfehlersuche durch das ISOMETER® beendet.

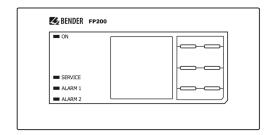
Kompatibilität mit EDS-Geräten


Gerät	Artikel Nummer	Kompatibilität	BB-Bus	BS-Bus
EDS440-L, EDS440W-L	B91080202, B91080202W	voll		×
EDS441-L, EDS441W-L	B91080205, B91080205W	voll		×
EDS441-LAB, EDS441W-LAB	B91080207, B91080207W	voll		×
EDS460/490[L/D]		Unterstützung		×
EDS461/491[L/D]		eingeschränkt. Nicht für Neuanla- gen verwenden.		×
EDS440-S, EDS440W-S	B91080201, B91080201W	voll	×	
EDS441-S, EDS441W-S	B91080204, B91080204W	voll	×	
EDS195P	B91082040	voll		

Varianten

iso685(W)-D..., isoxx685(W)-D... Grafisches LC-Display und Bedienelemente.

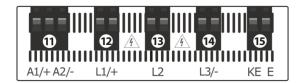

Nicht mit FP200(W) kombinierbar.

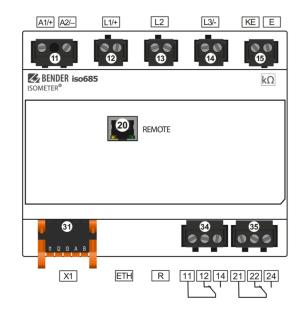


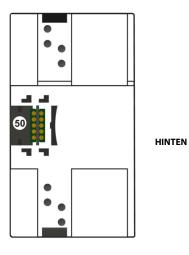
iso685(W)-S...,

 $\label{thm:continuous} \mbox{Kein Display und keine Bedieneinheit. Nur in Kombination mit FP200(W) verwendbar.}$

isoxx685(W)-S...

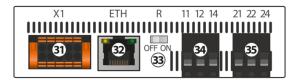






Anschlüsse

OBEN



UNTEN

VORNE

11	A1/+, A2/-	Anschluss an die Versorgungsspannung $U_{\rm s}$
12	L1/+	Anschluss des zu überwachenden IT-Systems
13	L2	Anschluss des zu überwachenden IT-Systems
14	L3/-	Anschluss des zu überwachenden IT-Systems
15	KE, E	Anschluss an PE
20	X4	Nur isoxx685(W)-S: Anschluss des FP200(W)
31	X1	Multifunktionale I/O-Schnittstelle
32	ETH (X2)	Ethernet-Schnittstelle
33	R	Zuschaltbarer Abschlusswiderstand zur Terminierung der RS-485-Schnittstelle
34	11 12 14	Anschluss des Alarmrelais 1
35	21 22 24	Anschluss des Alarmrelais 2
50	BB-Bus	Nur isoxx685(W)-x-P: Erweiterungsschnittstelle für Bender-Produkte (z. B. BB-Bus)

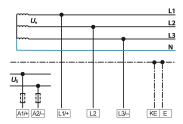
Die Verbindung zwischen dem iso685-Gerät und einem FP200(W) darf jederzeit hergestellt und unterbrochen werden, wird allerdings nur im spannungslosen Zustand empfohlen.

i

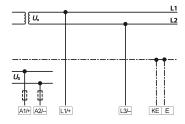
Anschluss

Ordnungsgemäßen Anschluss prüfen!

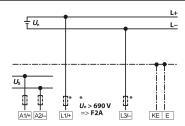
Kontrollieren Sie vor Inbetriebnahme der Anlage, ob das Gerät ordnungsgemäß angeschlossen ist und funktioniert. Führen Sie dazu eine Funktionsprüfung durch einen Erdschluss über einen geeigneten Widerstand durch.


Messfehler verhindern!

Wenn ein überwachtes AC-Netz galvanisch gekoppelte Gleichstromkreise enthält, gilt: Ein Isolationsfehler kann nur dann wertrichtig erfasst werden, wenn über die Gleichrichterventile ein Mindeststrom von >10 mA fließt.

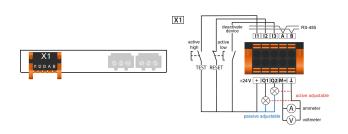

Für UL-Anwendungen

Nur 60/75-°C-Kupferleitungen verwenden! Die Versorgungsspannung ist bei UL- und CSA-Applikationen zwingend über 5-A-Vorsicherungen zuzuführen.


Anschluss an ein 3(N)AC-Netz

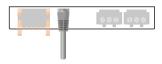
Anschluss an ein AC-Netz

Anschluss an ein DC-Netz

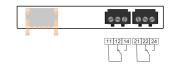


Bei Systemen mit einer Netznennspannung von über 690 V und Überspannungskategorie III ist eine Sicherung für den Anschluss an das zu überwachende Netz vorzusehen. * 2-A-Sicherungen empfohlen.

Anschluss an die Versorgungsspannung



Anschluss der Schnittstelle X1


I1I3	Konfigurierbare digitale Eingänge (z. B. Test, Reset,)
A, B	Serielle Schnittstelle RS-485, Terminierung mittels DIP- Schalter R .
+	Versorgungsspannung der Ein- und Ausgänge I, Q und M. Elektr. Überlastschutz. Autom. Abschaltung bei Kurzschluss und Transiente (zurücksetzbar). Bei Versorgung über ein externes 24-V-Netzteil dürfen A1/+, A2/– nicht angeschlossen werden.
Q1, Q2	Konfigurierbarer digitaler Ausgang
M+	Konfigurierbarer analoger Ausgang (z. B. Messinstrument)
	Bezugspotential Masse

Anschluss der Ethernet-Schnittstelle ETH

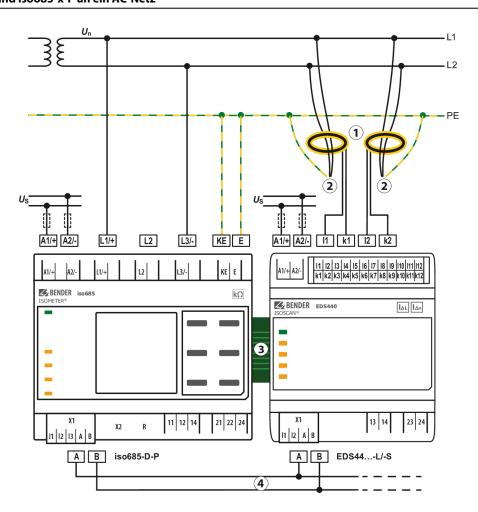
Anschluss mit Standard-Patch-Kabel (RJ45/kein Crossover-Kabel) zu anderen ISOMETER®n oder Vernetzung mehrerer ISOMETER® in Stern-Topologie mittels Switch.

Anschluss der Relais-Schnittstellen 1 und 2

Relais 1	1 1 gemeinsamer Kontakt	1 2 Öffner	1 4 Schließer
Relais 2	2 1 gemeinsamer Kontakt	2 2 Öffner	2 4 Schließer

Anschluss des BB-Bus

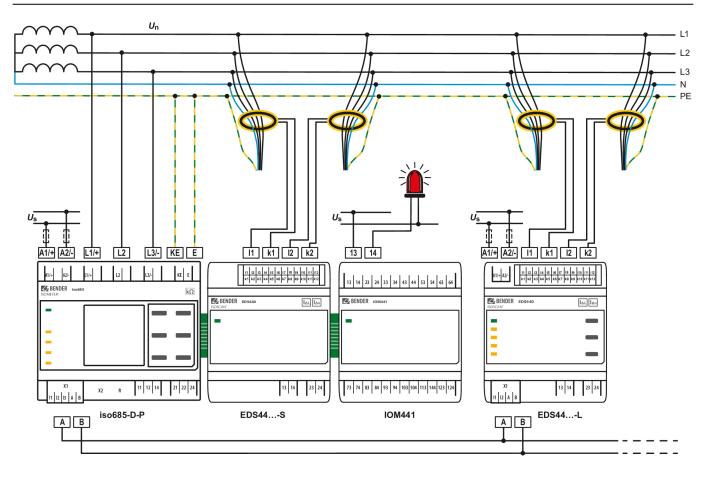
Der BB-Bus ist eine Schnittstelle, die es Bender-Geräten ermöglicht, miteinander zu kommunizieren. Der BB-Bus kann mit einem ISOMETER® und einem oder mehreren EDS44x-S verwendet werden. Dazu wird der BB-Bus auf der Rückseite der beiden Geräte angebracht und die Geräte anschließend nebeneinander auf die Hutschiene gesetzt. Weitere Informationen finden Sie im dem Quickstart, der den BB-Bus-Leiterplatten beiliegt.


Wird das ISOMETER® mit einem EDS44x-S kombiniert, dann wird die **BB-Bus 6TE Steckverbindung** benötigt. Sie muss zusätzlich bestellt werden. Zusätzlich an das ISOMETER® angeschlossene Geräte in der Sensorvariante benötigen keine zusätzliche Versorgungsspannung, wenn sie über X3 mit dem BB-Bus verbunden sind.

Es können max. zwei EDS44x-S oder je ein EDS und ein IOM441 an ein ISOMETER® angeschlossen werden. Bei montiertem BB-Bus muss das EDS44x/IOM441 immer auf der rechten Seite des ISOMETER®s montiert werden. Zum Schutz vor Kurzschluss muss zusätzlich an jedes erste und letzte auf der Hutschiene sitzende Gerät mit BB-Bus ein BB-Bus-Endhalter montiert werden.

Für mit dem BB-Bus verbundene Geräte gilt:

Der maximale Ausgangsstrom wird gemäß der Formel zur Berechnung von I_{LmaxX1} reduziert. Die Formel finden Sie unter Ein-/Ausgänge (X1) im Abschnitt Tabellarische Daten.


Anschluss EDS44x und iso685-x-P an ein AC-Netz

- 1 Messstromwandler
- 2 zu den Verbrauchern
- 3 BB-Bus für Kommunikation und Versorgung zu EDS44...-S
- 4 BS-Bus für Kommunikation von iso685(W)-...-P zu EDS44...-L
- $U_{\rm S}$ Anschluss der Versorgungsspannung nur an EDS44...-L

Verbund mit iso685-x-P, EDS44x und IOM441

Technische Daten

Icalations	lea a u din atia	n nach IE	60664-1/-3
isolations	KOORAINATIO	n nach IFO	60664-1/-3

Bemessungsspannung	1000 V
Überspannungskategorie	III
Definitionen	
Messkreis (IC1)	L1/+, L2, L3/–
Versorgungskreis (IC2)	A1, A2
Ausgangskreis 1 (IC3)	11, 12, 14
Ausgangskreis 2 (IC4)	21, 22, 24
Steuerkreis (IC5)	(E, KE), X1, ETH, X3, X4

Bemessungs-Stoßspannung

IC1/(IC2-5)	8 kV
IC2/(IC3-5)	4 kV
IC3/(IC4-5)	4 kV
IC4/IC5	4 kV

Bemessungs-Isolationsspannung

IC1/(IC2-5)	1000 V
IC2/(IC3-5)	250 V
IC3/(IC4-5)	250 V
IC4/IC5	250 V
Verschmutzungsgrad außen (U _n < 690 V)	3
Verschmutzungsgrad außen (690 V < U _n < 1000 V)	2

Sichere Trennung (verstärkte Isolierung) zwischen

IC1/(IC2-5)	Überspannungskategorie III, 1000 V
IC2/(IC3-5)	Überspannungskategorie III, 300 V
IC3/(IC4-5)	Überspannungskategorie III, 300 V
IC4/IC5	Überspannungskategorie III, 300 V

Spannungsprüfung (Stückprüfung) nach IEC 61010-1

IC2/(IC3-5)	AC 2,2 kV
IC3/(IC4-5)	AC 2,2 kV
IC4/IC5	AC 2,2 kV

Versorgungsspannung

Versorgung über A1/+, A2/-

$\overline{ m Versorgungsspannungsbereich U_{\rm s}}$	AC/DC 24240 V
Toleranz von U _s	-30+15 %
Maximal zulässiger Eingangsstrom von $U_{\rm s}$	650 mA
Frequenzbereich von U_s	DC, 50400 Hz *
Toleranz des Frequenzbereichs von $U_{\rm s}$	-5+15 %
Leistungsaufnahme typisch bei DC	≤ 12 W
Leistungsaufnahme typisch bei 50/60 Hz	≤ 12 W / 21 VA
Leistungsaufnahme typisch bei 400 Hz	≤ 12 W / 45 VA
Leistungsaufnanme typisch bei 400 Hz	

Bei Frequenzen > 200 Hz muss der Anschluss von X1 und Remote berührungssicher ausgeführt werden. Es dürfen nur fest installierte Geräte mit Überspannungskategorie min. KAT2 (300 V) angeschlossen werden.

Versorgung über X1

Versorgungsspannung U_s	DC 24 V
Toleranz von $U_{\rm s}$	DC -20+25 %

Überwachtes IT-System

Netznennspannungsbereich U_n	AC 0690 V
	DC 01000 V
Netznennspannungsbereich U_n für UL-Anwendungen	AC/DC 0600 V
Toleranz von $U_{\rm n}$	AC/DC ±15 %
Frequenzbereich von U _n	DC 0,1460 Hz
Max Wechselspannung U^{\sim} (für $f_{\rm n}$ < 4 Hz)	$U_{\text{max}}^{\sim} = 50 \text{ V} \times (1 + f_{\text{n}}^{2})$

Ansprechwerte

Ansprechwert R _{an1} (Alarm 1)	1 kΩ 10 MΩ
Ansprechwert R _{an2} (Alarm 2)	1 kΩ 10 MΩ
Ansprechunsicherheit (nach IEC 61557-8)	profilabhängig, ±15 %, mind. ±1 k Ω
Hysterese	25 %, mind. 1 kΩ

Zeitverhalten

Ansprechzeit t _{an}	promabnangig, typ. 4 s
bei $R_{\rm F} = 0.5 \times R_{\rm an} (10~{\rm k}\Omega)$ und $C_{\rm e} (1~{\rm \mu F})$ nach IEC 61557-8	
Ansprechzeit DC-Alarm bei $C_e = 1 \mu F$	profilabhängig, typ. 2 s
Anlaufverzögerung t _{Anlauf}	0 s 10 min

Messkreis

Messspannung $U_{\rm m}$	profilabhängig, ±10 V, ±50 V
	(siehe Geräteprofile)
Messstrom I _m	≤ 403 μA
Innenwiderstand $R_{i'}Z_i$	≥ 124 kΩ
Zulässige Fremdgleichspannung U_{fg}	≤ 1200 V
Zulässige Netzableitkapazität C _e	profilabhängig, 01000 μF
Prüfstrom	1 / 1,8 / 2,5 / 5 / 10 / 25 / 50 mA

Messbereiche

Messbereich f _n	0,1460 Hz
Toleranz Messung von f _n	±1 % ±0,1 Hz
Spannungsbereich Messung von f _n	AC 25690 V
Messbereich U _p	AC 25690 V
	DC 01000 V
Spannungsbereich Messung von U _n	AC/DC > 10 V
Toleranz Messung von U _n	±5 % ±5 V
Messbereich C _e	01000 μF
Toleranz Messung von C _e	±10 % ±10 μF
Frequenzbereich Messung von $C_{\rm e}$	DC 30460 Hz
Isolationswiderstand Messung von $C_{\rm e}$	typ. > 10 kΩ
abhängig von Profil und Ankopplungsart	

Anzeige

Anzeige	Grafikdisplay 127 x 127 Pixel, 40 x 40 mm *
Anzeigebereich Messwert	0,1 kΩ 20 MΩ
Betriebsmessunsichereit (nach IEC61557-8)	$\pm 15\%$, mind. 1 k Ω

Die Anzeige außerhalb des Temperaturbereichs –25…+55 °C ist eingeschränkt.

LEDs

ON (Betriebs-LED)	grün
PGH ON	gelb
SERVICE	gelb
ALARM 1	gelb
ALARM 2	gelb

Ein-/Ausgänge (X1)

Leitungslänge X1 (ungeschirmtes Kabel)	≤ 10 m
Leitungslänge X1 (geschirmtes Kabel, Schirm einseitig geerdet) empfohlen: J-Y(St)Y min. 2×0,8	≤ 100 m
Max Ausgangsstrom bei Versorgung über X1+/X1GND je Ausgang	max. 1 A
Max Ausgangsstrom bei Versorgung über A1/A2 in Summe an X1	max. 200 mA
Max Ausgangsstrom bei Versorgung über A1/A2 in Summe an X1 zwischen 16,8 V und 40 V	$I_{\rm LmaxX1} = 10 \text{ mA} + 7 \text{ mA} / \text{V} \times U_{\rm s}^*$

^{*} $U_{\rm s}$ ist die Versorgungsspannung des ISOMETER*s. Negative Werte für $I_{\rm LmaxX1}$ sind nicht zulässig.

Digitale Eingänge (I1, I2, I3)

Anzahl	3
Arbeitsweise, einstellbar	high-aktiv, low-aktiv
Funktionen	aus, Test, Reset, Gerät deaktivieren, initiale Messung starten
Spannung	Low DC –35 V, High DC 1132 V
Toleranz Spannung	±10 %

Digitale Ausgänge (Q1, Q2)

Anzahl	2
Arbeitsweise, einstellbar	Aktiv, Passiv
Funktionen	aus, Iso Alarm 1, Iso Alarm 2, Anschlussfehler,
	DC- Alarm *, DC+ Alarm *, Symmetrischer Alarm,
	Gerätefehler, Sammelalarm, Messung beendet, Gerät
	inaktiv, DC-Verlagerung Alarm
Spannung	Passiv DC 032 V, Aktiv DC 0 / 19,232 V
* Nur für $U_n \ge 50 \text{ V}$	

Analoger Ausgang (M+)

Anzahl	1
Arbeitsweise, einstellbar	Linear, Skalenmittelpunkt 28 kΩ/120 kΩ
Funktionen	Isolationswert, DC-Verlagerung
Strom (Bürde)	020 mA (< 600 Ω)
	420 mA (< 600 Ω)
	$0400~\mu\text{A}~(<4~\text{k}\Omega)$
Spannung (Bürde)	010 V (>1 kΩ)
	210 V (>1 kΩ)
Toleranz bezogen auf den Strom-/	±20 %
Spannungsendwert	

Schnittstellen

Feldbus

Schnittstelle/Protokoll	Webserver/Modbus TCP/BCOM
Datenrate	10/100 Mbit/s, autodetect
Max. Anzahl Modbus Anfragen	< 100/s
Leitung	min. CAT 6
Leitungslänge	≤ 100 m
Anschluss	RJ45
IP-Adresse	DHCP/manuell 192.168.0.5
Netzmaske	255.255.255.0
BCOM-Adresse	system-1-0
Funktion	Kommunikationsschnittstelle

ISOnet

ISOnet Teilnehmer Anzahl	220
Maximale Netznennspannung ISOnet	AC, 690 V
	DC, 1000 V
EDSsync	
EDSsync Teilnehmer Anzahl	210

ISOloop

ISOloop Teilnehmer Anzahl	210

Sensorbus

Schnittstelle / Protokoll	RS-485 / isoData, BS-Bus, Modbus RTU
Datenrate Modus 1	9,6 kBd
Leitung: paarweise verdrillt, Schirm einseitig	empfohlen: J-Y(St)Y min 2×0,8
an PE	
Leitungslänge (abhängig von der Baudrate)	≤ 1200 m
Anschluss	Klemmen X1.A, X1.B
Abschlusswiderstand	120 Ω, intern zuschaltbar
Geräteadresse	190

Schaltglieder

Schaltglieder	2 Wechsler
Arbeitsweise	Ruhestrom (N/C)/Arbeitsstrom (N/O)
Kontakte 11-12-14 / 21-22-24	aus, Iso. Alarm 1, Iso. Alarm 2, Anschlussfehler,
	DC- Alarm*, DC+ Alarm*, Symmetrischer Alarm,
	Gerätefehler, Sammelalarm, Messung beendet, Gerät
	inaktiv, DC-Verlagerung Alarm

	maner, be venagerang, narm
Elektrische Lebensdauer bei	10.000 Schaltspiele
Bemessungsbedingungen	
* Nur für $U_n \ge 50 \text{ V}$	

Kontaktdaten nach IEC 60947-5-1

Gebrauchskategorie	AC-13 / AC-14 / DC-12 / DC-12 / DC-12 / DC-12
Bemessungsbetriebsspannung	230 V / 230 V / 24 V / 48 V / 110 V / 220 V
Bemessungsbetriebsstrom	5 A / 3 A / 1 A / 1 A / 0,2 A / 0,1 A
Bemessungsisolationsspannung \leq 2000 m $\ddot{\rm u}$. NN	250 V
$\overline{ \text{Bemessungsisolationsspannung} \leq 3000 \text{ m ""} \text{"}}.$ NN	160 V
Minimale Kontaktbelastbarkeit	1 mA bei AC/DC ≥10 V

Umwelt & EMV

EMV	IEC 61326-2-4
Arbeitstemperatur	−25…+55 °C
Transport	−40…+85 °C
Langzeitlagerung	−40+70 °C

Klimaklassen nach IEC60721 (bezogen auf Temperatur und rel. Luftfeuchtigkeit)

Ortsfester Einsatz (IEC 60721-3-3)	3K22
Transport (IEC 60721-3-2)	2K11
Langzeitlagerung (IEC 60721-3-1)	1K22

Mechanische Beanspruchung nach IEC60721

Ortsfester Einsatz (IEC 60721-3-3)	3M11
Transport (IEC 60721-3-2)	2M4
Langzeitlagerung (IEC 60721-3-1)	1M12
Einsatzbereich	≤3000 m ü. NN

Anschluss

Nennstrom	≤10 A
Anzugsmoment	0,50,6 Nm
	(57 lb-in)
Leitergrößen	AWG 24-12
Abisolierlänge	7 mm
Leiterquerschnitt	
starr/flexibel	0,22,5 mm ²
flexibel mit Aderendhülse mit/ohne Kunststoffhülse	0,252,5 mm ²
flexibel mit Aderendhülse mit/ohne Kunststoffhülse	0,252,5 mm ²
Mehrleiter flexibel	0,21,5 mm ²
Mehrleiter flexibel mit Aderendhülse ohne Kunststoffhülse	0,251 mm ²
Mehrleiter flexibel mit TWIN Aderendhülse mit Kunststoffhülse	0,51,5 mm ²

Federklemmen

≤10 A
AWG 24-12
10 mm
0,22,5 mm ²
0,252,5 mm ²
0,51,5 mm ²

Federklemmen X1

Nennstrom	≤ 8 A
Leitergrößen	AWG 24-16
Abisolierlänge	10 mm
Leiterquerschnitt	
starr/flexibel	0,21,5 mm ²
flexibel mit Aderendhülse mit/ohne Kunststoffhülse	0,251,5 mm ²
flexibel mit Aderendhülse mit Kunststoffhülse	0,250,75 mm ²

Sonstiges

	Dauerbetrieb
Einbaulage	display-orientiert *
Schutzart Einbauten	IP40
Schutzart Klemmen	IP20
Schnellbefestigung auf Hutprofilschiene	IEC 60715
Schraubbefestigung	3 x M4 mit Montageclip
Gehäusematerial	Polycarbonat
Entflammbarkeitsklasse (UL 94)	V-0
ANSI Code	64
Maße (B \times H \times T)	108 × 93 × 110 mm
Gewicht	< 390 g

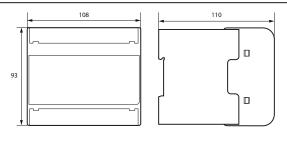
Für eine optimale Belüftung die Kühlschlitze senkrecht ausrichten (0°).

Bei einer Ausrichtung von 45° verringert sich die max. Arbeitstemperatur um 10 °C.

Bei einer Ausrichtung von 90° verringert sich die max. Arbeitstemperatur um 20 °C.

Abweichende Daten Option "W"

Die Geräte mit der Endung **W** entsprechen erhöhter Schock- und Rüttelfestigkeit. Durch eine besondere Lackierung der Elektronik wird ein höherer Schutz gegen mechanische Belastung und gegen Feuchtigkeit erreicht.


Bemessungsbetriebsstrom Schaltglieder	max. 3 A (für UL-Anwendungen)
Umgebungstemperaturen	
Arbeitstemperatur	−40…+70 °C
Arbeitstemperatur für UL-Anwendungen	−40…+65 °C
Transport	−40…+85 °C
Langzeitlagerung	−40…+70 °C
Klimaklasse nach IEC 60721	
Ortsfester Einsatz (IEC 60721-3-3)	3K23
Mechanische Beanspruchung nach IEC 60721	
Ortsfester Einsatz (IEC 60721-3-3)	3M12

Kombination Sensorvariante des ISOMETER®s mit FP200W: Die Anforderungen der Option **W** werden nur erfüllt, wenn die Sensorvariante des ISOMETER®s auf der Hutschiene montiert und mit dem FP200W über das Patchkabel verbunden ist. Siehe auch Quickstart FP200 (Dokumentnummer D00169).

Maße

Maßangaben in mm

Normen und Zulassungen

Das ISOMETER® wurde unter Beachtung folgender Normen entwickelt:

- DIN EN 61557-8 (VDE 0413-8): 2015-12
- IEC 61557-8: 2014-12
- IEC 61557-8: 2014/COR1:2016
- DIN EN 61557-8 Ber 1 (VDE 0413-8 Ber 1): 2016-12
- IEC 61557-9

Bestellinformationen

Gerät

Тур	Versorgungsspannung $U_{\rm s}$	Artikel- nummer
iso685-D-P	AC 24240 V; 50400 Hz; DC 24240 V	B91067030
iso685W-D-P*	AC 24240 V; 50400 Hz; DC 24240 V	B91067030W
iso685-S-P + FP200	AC 24240 V; 50400 Hz; DC 24240 V	B91067230
iso685W-S-P + FP200W *	AC 24240 V; 50400 Hz; DC 24240 V	B91067230W

Option **W**: Erhöhte Schock- und Rüttelfestigkeit 3K23; 3M12; –40...+70 °C

Zubehör

Bezeichnung	Artikel- nummer
iso 685 Mechanisches Zubehör bestehend aus Klemmenabdeckung, 2 Montageclips *	B91067903
iso685 Stecker-Kit für Schraubklemmen *	B91067901
iso685 Stecker-Kit für Push-In Federklemmen	B91067902
BB-Bus 6TE Steckverbindung	B98110001

^{*} im Lieferumfang enthalten

Passende Systemkomponenten

Тур	Bezeichnung	Artikel- nummer
7204-1421	Mögliche Messinstrumente	B986763
9604-1421	Skalenmittelpunkt: 28 kΩ; 120 kΩ Stromwerte: 0400 μA; 020 mA	B986764
9620-1421	στοπινέτει σ 400 μ/, σ 20 π/ν	B986841
FP200	Anzeige für den Fronttafeleinbau	B91067904
FP200W	Anzeige für den Fronttafeleinbau	B91067904W
iso685-S-P	ISOMETER® Sensorvariante * AC 24240 V; 50400 Hz; DC 24240 V	B91067130
iso685W-S-P	ISOMETER® Sensorvariante * AC 24240 V; 50400 Hz; DC 24240 V	B91067130W

Nur mit gesondertem Panel FP200(W) erhältlich

Isolationsfehlersuchgeräte

Тур	Versorgungs- spannung U _s *	Ansprech- wert	Artikelnummer
EDS440-S-1	AC/DC 24240 V	210 mA	B91080201
EDS440W-S-1	AC/DC 24240 V	210 mA	B91080201W
EDS440-L-4	AC/DC 24240 V	210 mA	B91080202
EDS440W-L-4	AC/DC 24240 V	210 mA	B91080202W
EDS441-S-1	AC/DC 24240 V	0,21 mA	B91080204
EDS441W-S-1	AC/DC 24240 V	0,21 mA	B91080204W
EDS441-L-4	AC/DC 24240 V	0,21 mA	B91080205
EDS441W-L-4	AC/DC 24240 V	0,21 mA	B91080205W
EDS441-LAB-4	AC/DC 24240 V	0,21 mA	B91080207
EDS441W-LAB-4	AC/DC 24240 V	0,21 mA	B91080207W

^{*} Absolute Werte

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

© Bender GmbH & Co. KG, Germany Änderungen vorbehalten! Die angegebenen Normen berücksichtigen die bis zum 08.2024 gültige Ausgabe, sofern nicht anders angegeben.