# NGRM500 (HRG) NGRM550 (LRG)

Neutral Grounding Resistor Monitor





## NGRM500 (HRG) NGRM550 (LRG)



Certifications



UL File Number: E493737, E173157

#### **Device features**

- Determination of  $R_{NGR}$  with passive and active measurement methods
- Continuous monitoring of the *R*<sub>NGR</sub> even if the installation is de-energized;
- Alarm or trip on ground fault
- Monitoring of the current INGR
- Monitoring of the voltage  $U_{\rm NGR}$
- Ethernet communication
- Web server
- Language selection (German, English GB and US, Spanish, French)
- Test button (internal, external) with/without tripping
- FFT analysis of neutral current and voltage
- Pulser control for manual ground fault location
- · Relay outputs for detection of ground faults and resistor faults
- Relay output for shutdown of the installation after a configurable time
- Can be combined with RCMS... for automatic shutdown of feeders
- Graphical user interface
- Wide supply voltage range for operating the NGR monitor
- Range of use up to 2000 m AMSL
- Fault/History memory
- Analogue output of measured values (0...10 V, 4...20 mA, etc., selectable parameters)
- Password protection
- Tripping on RMS, fundamental component signal or harmonics
- Detection of AC and DC ground faults
- Variants High Resistance Grounded (HRG), Low Resistance Grounded (LRG)

|                      | HRG             |  | LRG     |         |
|----------------------|-----------------|--|---------|---------|
|                      | NGRM500 NGRM700 |  | NGRM550 | NGRM750 |
| U <sub>sys LL</sub>  | 40025000V       |  |         |         |
| I <sub>NGR nom</sub> | 0100 A 102000 A |  | 2000 A  |         |
| <b>R</b> NGR nom     | 155000 Ω        |  | 0,1     | 200 Ω   |

#### **Product description**

The NGRM500 is only intended for use in high-resistance grounded systems. The NGRM550 is only intended for use in low-resistance grounded systems. In these systems, the NGRM5... monitors

- the current through the neutral-grounding resistor (NGR),
- the voltage between the star point of the transformer and ground (voltage drop across the NGR),
- the condition of the neutral grounding resistor (NGR).
- **1** Systems with a resistance-grounded star point can be used when an **interruption of the power supply would involve excessive costs due to production stoppage** (e.g. automotive production, chemical industry). The ground fault that occurs between a phase and ground does not lead to a failure of the power supply in these systems. A ground fault must be detected and eliminated as quickly as possible, since the occurrence of another ground fault in a second phase would lead to a tripping of the overcurrent protective device.

In order to meet the requirements of applicable standards, customised parameter settings must be made on the equipment in order to adapt it to local equipment and operating conditions.

#### Function

The NGRM5... monitors NGR resistance  $R_{NGR}$ , neutral voltage  $U_{NGR}$  and current  $I_{NGR}$ . NGR resistance is monitored using an active and a passive procedure:

active The device generates an active test pulse and measures  $R_{\text{NGR}}$  even if the

installation is de-energised.

passive The resistance  $R_{NGR}$  is determined when  $I_{NGR}$  or  $U_{NGR}$  exceeds an internal threshold. The device measures the existing current and voltage and calculates  $R_{NGR}$ .

In the case of the "auto" method, monitoring switches automatically between "active" and "passive" when the measured current or voltage value exceeds or falls below the internal threshold. The threshold is 15 % of the nominal value and can be adjusted by Bender if required.

A shorted or open NGR is reliably detected in an energized as well as a de-energized installation with the active measurement method.

When the "passive" method is selected, no switching of the monitoring takes place. The NGR is not monitored if the installation is shut down or the current and voltage are too low.

The measurement method can be selected as a set point or via the configurable digital input I1 if the NGR method "external" has been selected (for software versions from July 2021).

Should the use of frequency inverters lead to interferences with the RNGR measured value during the active measurement, a filter for active resistance measurement can be added. To this end, 3 pre-defined filters (weak, medium, strong) have been implemented. In addition, the filter parameters can be adapted individually in the setting "Customer-specific".

The NGR-fault relay switches from the operating state (selectable as fail-safe or non-failsafe) to the alarm state when the measured resistance RNGR is outside of the configured thresholds.

A ground fault is signalled via the corresponding ground-fault relay and the "GROUND FAULT" LED when  $I_{NGR}$  or  $U_{NGR}$  exceeds the selectable thresholds. After the adjustable time delay has elapsed, the trip relay operates. After the ground fault has been eliminated, the installation can be restarted either automatically or manually, depending on the configuration.

A connection to installations ranging from 400 V...25 kV is possible via the appropriate CD-series coupling device.  $I_{NGR}$  is measured with **measuring current transformers** with a 5 A or 50 mA secondary rating.

#### User interface FP200-NGRM



#### **Display elements**

| ON              | Operation LED, green;<br>on when power supply is available                                                                                                                                                                                             |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | The LC display shows device and measurement information.                                                                                                                                                                                               |
| SERVICE         | The LED is on when there is either a device fault or a connection fault, and when the device is in maintenance mode.                                                                                                                                   |
| TRIPPED         | The LED is on when the trip relay has been tripped due to an NGR fault, ground fault or a device error.                                                                                                                                                |
| NGR FAULT       | The LED flashes in case of a prewarning: NGR fault detected, NGR fault relay has tripped, trip relay has not tripped yet ( $t_{NGR trip}$ elapses).<br>The LED is on when an NGR fault has been detected. Trip relay and NGR-fault relay have tripped. |
| GROUND<br>FAULT | The LED flashes in case of a prewarning:<br>ground fault detected, ground-fault relay has<br>tripped, trip relay has not tripped yet ( $t_{GF}$ trip<br>elapses).<br>The LED is on: ground fault detected, trip relay<br>has tripped (if configured).  |
|                 | SERVICE<br>TRIPPED<br>NGR FAULT<br>GROUND                                                                                                                                                                                                              |

#### **Device buttons**

| 7- A                 | Navigates up in a list or increases a value.                                  |
|----------------------|-------------------------------------------------------------------------------|
| 8 - MENU             | Opens the device menu.                                                        |
| ESC                  | Cancels the current process or navigates one step back in the device menu.    |
| 9- RESET             | Confirms and resets alarms.                                                   |
| <                    | Navigates backwards (e.g. to the previous setting step) or selects parameter. |
| 10 - <b>TEST</b>     | Starts the device self test.                                                  |
| >                    | Navigates forwards (e.g. to the next setting step) or selects parameter.      |
| 11 - <b>INFO</b>     | Shows information.                                                            |
| V                    | Navigates down in a list or reduces a value.                                  |
| 12 - <b>DATA</b>     | Indicates data and values.                                                    |
| ОК                   | Confirms an action or a selection.                                            |
| Analogue and         | digital I/O configuration                                                     |
| 13 - <b>X1</b>       | Interface X1                                                                  |
| 14 - <b>ETH</b>      | Ethernet interface                                                            |
| 15 - <b>R on/off</b> | Terminating resistor for A/B (Modbus RTU)                                     |

**Buzzer** Active in case of alarm and/or test

## **Connection: Star connection**



m i The "N" connection of the CD-series coupling device should be as close to the transformer star point as possible.



Connection: Star connection with pulser

1 The "N" connection of the CD-series coupling device should be as close to the transformer star point as possible. An intermediate relay may be required between the power contactor of the pulser and the digital output X1.

## Connection: Artificial neutral (delta connection) zigzag transformer

If no star point is available, the following circuit can create an artificial neutral.



#### Connectors CD...



#### Measuring current transformer connection

Depending on the system to be monitored, a suitable measuring current transformer has to be chosen. All common measuring current transformers (50 mA or 5 A on the secondary side) can be used. The following table helps you with the choice:

| System type                                                     | AC + DC                                                                          | AC                  | AC                | AC                                            |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|-------------------|-----------------------------------------------|
| I <sub>NGR</sub>                                                | 0,525 A                                                                          | 525 A               | 51000 A           | 102000 A                                      |
| f                                                               | 03800 Hz                                                                         | 423800 Hz           | 50/60 Hz          | 50/60 Hz                                      |
| Transformation<br>ratio Bender measuring<br>current transformer | Measuring range<br>(see CTUB103 manual)<br>5 A 100:1<br>10 A 200:1<br>25 A 500:1 | 600:1               |                   |                                               |
| Connecting cohi-                                                | max. 30 m                                                                        | max. 40 m           | max. 25 m (4      | mm²/AWG12)                                    |
| Connecting cable                                                | provided cable or 0.75.                                                          | 1.5 mm²/AWG1816     | max. 40 m (6      | mm <sup>2</sup> /AWG10)                       |
| I <sub>Δn</sub>                                                 | <b>\\\</b>                                                                       |                     |                   |                                               |
|                                                                 | CTUB103                                                                          | CTAC / CTAS         | CTB3151           | Any standard current transformer can be used. |
| Туре                                                            | 24 V                                                                             |                     | СТВ               |                                               |
|                                                                 | <u>                                    </u>                                      |                     |                   |                                               |
| CT: Terminal k                                                  | NGRM5: <b>50 mA</b>                                                              | NGRM5: <b>50 mA</b> | NGRM5: <b>5 A</b> | NGRM5: <b>5 A</b>                             |
| CT: Terminal I                                                  | NGRM5: <b>C</b>                                                                  | NGRM5: <b>C</b>     | NGRM5: <b>C</b>   | NGRM5: <b>C</b>                               |

## Connection of relays (ground-fault, NGR-fault and trip relay)



The delay times of the various relays are not the same. See table "Trip times relays" in the manual.

#### Connection to the X1 interface

#### Pin assignment X1 interface



#### X1: Input I1...3

The input is only detected as "activated" after the contact has been activated for at least 150 ms. This way, short interference pulses are ignored.



Input I1...3: Potential-free contact to common or 0 V and 24 V in conjunction with a PLC

#### X1: Output Q1...2









Connection to Q1, Q2: external relay or PLC.

## **1** Observe maximum current values!

The maximum **output current** on **X1**(+24 V) is **100 mA**. In case of higher currents, the relays require an external 24-V supply. The maximum current on **Q1 and Q2 is 300 mA each**.

#### X1: Analogue output

| Analogue output | Mode    | Permissible<br>load        |
|-----------------|---------|----------------------------|
| Current output  | 020 mA  | $\leq$ 600 $\Omega$        |
| Current output  | 420 mA  | $\leq$ 600 $\Omega$        |
|                 | 0400 μΑ | $\leq 4  \text{k}\Omega$   |
| Voltage output  | 010V    | $\geq 1  \text{k}\Omega$   |
| M+ V            | 210V    | $\geq 1  \mathrm{k}\Omega$ |

## **Technical Data**

| Insulation coordination according to IEC 60664-1/IEC 60664-3/DIN EN 50178  |                                    |  |
|----------------------------------------------------------------------------|------------------------------------|--|
| Definitions                                                                |                                    |  |
| Supply circuit (IC1)                                                       | (A1, A2)                           |  |
| Measuring circuit/Control circuit (IC2)                                    | (RS, E, CT), (X1, ETH)             |  |
| Output circuit 1 (IC3)                                                     | (11, 12, 14)                       |  |
| Output circuit 2 (IC4)                                                     | (21, 22, 24)                       |  |
| Output circuit 3 (IC5)                                                     | (31, 32, 34)                       |  |
| Rated voltage                                                              | 250 V                              |  |
| Overvoltage category                                                       |                                    |  |
| Rated impulse voltage                                                      | 4 LV                               |  |
| IC1/(IC25)<br>IC2/(IC35)                                                   | 4 kV<br>4 kV                       |  |
| IC3/(IC45)                                                                 | 4 KV<br>4 KV                       |  |
| IC4/(IC5)                                                                  | 4 KV<br>4 KV                       |  |
| Rated insulation voltage                                                   |                                    |  |
| IC1/(IC25)                                                                 | 250 V                              |  |
| IC2/(IC35)                                                                 | 250 V                              |  |
| IC3/(IC45)                                                                 | 250 V                              |  |
| IC4/(IC5)                                                                  | 250 V                              |  |
| Pollution degree exterior                                                  | 3                                  |  |
| Safe isolation (reinforced insulation) between                             |                                    |  |
| IC1/(IC25)                                                                 | overvoltage category III, 300 V    |  |
| IC2/(IC35)                                                                 | overvoltage category III, 300 V    |  |
| IC3/(IC45)                                                                 | overvoltage category III, 300 V    |  |
| IC4/(IC5)                                                                  | overvoltage category III, 300 V    |  |
| Voltage tests (routine test) acc. to IEC 61010-1                           |                                    |  |
| IC1/(IC25)                                                                 | AC 2.2 kV                          |  |
| IC2/(IC35)                                                                 | AC 2.2 kV                          |  |
| IC3/(IC45)                                                                 | AC 2.2 kV                          |  |
| IC4/(IC5)                                                                  | AC 2.2 kV                          |  |
| Supply voltage                                                             |                                    |  |
| Nominal supply voltage Us                                                  | AC/DC, 48240 V                     |  |
| for UL applications                                                        | AC/DC, 48240 V                     |  |
| for AS/NZS 2081 applications                                               | AC/DC, 48230 V                     |  |
| Tolerance U <sub>s</sub>                                                   | ±15 %                              |  |
| Tolerance $U_s$ (for UL applications)                                      | -50+15 %                           |  |
| Tolerance U <sub>s</sub> (for AS/NZS 2081 applications)                    | -25+20 %                           |  |
| Frequency range U <sub>s</sub>                                             | DC, 4070 Hz                        |  |
| Power consumption (max.)                                                   | $\leq$ 7 W / 16 VA                 |  |
| Monitoring R <sub>NGR</sub>                                                |                                    |  |
| Measuring input Rs                                                         | < 33 V RMS                         |  |
| Measuring range NGR (with $R_{\rm S} = 20 \ \rm k\Omega$ ) active          | 0…10 kΩ                            |  |
| Measurement uncertainty for $T = 0 \dots + 40 \ ^{\circ}C$                 | ±20 Ω                              |  |
| Measurement uncertainty for $T = -40+70$ °C                                | ±40 Ω                              |  |
| Measuring range NGR (with $R_{\rm S} = 100 \text{ k}\Omega$ ) active       | 0…10 kΩ                            |  |
| Measurement uncertainty for $T = 0+40$ °C                                  | ±30 Ω                              |  |
| Measurement uncertainty for $T = -40+70 \text{ °C}$                        | ±80 Ω                              |  |
| HRG                                                                        | 15.0 51.0                          |  |
| Setting range R <sub>NGR nom</sub>                                         | 15 Ω5 kΩ                           |  |
| Response value $< R_{NGR nom}$                                             | 1090 % <i>R</i> <sub>NGR nom</sub> |  |
| Response value >R <sub>NGR nom</sub>                                       | 110200 % R <sub>NGR nom</sub>      |  |
| LRG Sotting range Pure                                                     | 0.1200 Ω                           |  |
| Setting range R <sub>NGR nom</sub><br>Response value >R <sub>NGR nom</sub> | 0.1200 Ω<br>200500 Ω               |  |
| Response delay, NGR-fault relay                                            | 200500 C2<br>7 s (±2.5 s)          |  |
| Response delay, trip relay                                                 | 048 h                              |  |
| nesponse delay, trip relay                                                 | 04011                              |  |

| Monitoring / <sub>NGR</sub>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measuring circuit 5 A                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nominal measuring current In                                                                                                                                                                                                                                                                                                                                        | DC / 50/60 Hz / 103200 Hz 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Maximum continuous current                                                                                                                                                                                                                                                                                                                                          | 2 x /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Overload capacity                                                                                                                                                                                                                                                                                                                                                   | 10 x / <sub>n</sub> for 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measurement accuracy                                                                                                                                                                                                                                                                                                                                                | ±2 % of /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Load                                                                                                                                                                                                                                                                                                                                                                | 10 mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Measuring circuit 50 mA                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nominal measuring current <i>I</i> <sub>n</sub>                                                                                                                                                                                                                                                                                                                     | DC / 50/60 Hz / 103200 Hz 50 m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Maximum continuous current                                                                                                                                                                                                                                                                                                                                          | 2 x /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Overload capacity                                                                                                                                                                                                                                                                                                                                                   | 10 x / <sub>n</sub> for 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measurement accuracy                                                                                                                                                                                                                                                                                                                                                | ±2% of <i>I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Load                                                                                                                                                                                                                                                                                                                                                                | 68 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring circuits 5 A and 50 mA                                                                                                                                                                                                                                                                                                                                    | 10 00 0/ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Response value / <sub>NGR</sub>                                                                                                                                                                                                                                                                                                                                     | 1090 % / <sub>NGR non</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Response delay, ground-fault relay                                                                                                                                                                                                                                                                                                                                  | $\leq$ 40 ms (±10 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Response delay, trip relay (configurable)                                                                                                                                                                                                                                                                                                                           | 100 ms48 h, ∝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tolerance t <sub>trip</sub> when set to<br>RMS                                                                                                                                                                                                                                                                                                                      | 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rivis<br>Fundamental                                                                                                                                                                                                                                                                                                                                                | −20…0 m:<br>0…+150 ms (filter time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Harmonics                                                                                                                                                                                                                                                                                                                                                           | 0+150 ms (filter time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Measuring current transformer ratio primary                                                                                                                                                                                                                                                                                                                         | 110,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measuring current transformer ratio secondary                                                                                                                                                                                                                                                                                                                       | 110,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measuring current transformer ratio secondary<br>Measuring range                                                                                                                                                                                                                                                                                                    | 2 x / <sub>NGR non</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Coupling                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $R_{\rm S}$ for $U_{\rm sys} \le 4.3$ kV                                                                                                                                                                                                                                                                                                                            | CD1000, CD1000-2, CD5000 (20 kΩ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $R_{\rm S}$ for $U_{\rm sys} > 4.3$ kV                                                                                                                                                                                                                                                                                                                              | CD14400, CD25000 (100 kΩ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Monitoring U <sub>NGR</sub>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                     | 3200 Hz; $(400/\sqrt{3}) \dots \le (4300/\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $U_{\rm NGR}$ with $R_{\rm S} = 100  \rm k\Omega$ DC / 50/60 Hz /                                                                                                                                                                                                                                                                                                   | 103200 Hz; > (4.3 / $√$ 3)(25/ $√$ 3) k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $U_{\rm NGR}$ with $R_{\rm S} = 100 \ {\rm k}\Omega$ DC / 50/60 Hz / Measuring range                                                                                                                                                                                                                                                                                | 103200 Hz; > (4.3 /√3)(25/√3) kV<br>1.2 x U <sub>NGR non</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $U_{\rm NGR}$ with $R_{\rm S} = 100  {\rm k}\Omega$ DC / 50/60 Hz /<br>Measuring range<br>Overload capacity                                                                                                                                                                                                                                                         | 103200 Hz; > (4.3 /√3)(25/√3) kN<br>1.2 x U <sub>NGR non</sub><br>2 x U <sub>NGR</sub> for 10 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{ll} U_{\rm NGR} \text{ with } R_{\rm S} = 100 \text{ k}\Omega & \text{DC} \ / \ 50/60 \text{ Hz} \ / \ \\ \text{Measuring range} & & \\ \text{Overload capacity} & \\ \text{Measurement accuracy} & 2 \ \% \end{array}$                                                                                                                              | $\begin{array}{l} 103200 \text{ Hz; } > (4.3 \ / \sqrt{3}) \(25 \ / \sqrt{3}) \text{ kl} \\ 1.2 \ x \ U_{\text{NGR non}} \\ 2 \ x \ U_{\text{NGR for 10}} \\ 0 \ \text{of } U_{\text{NGR nom}} \text{ with } U_{\text{NGR nom}} = (U_{\text{sys}}(L_{-}) \ / \sqrt{3}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c c} U_{NGR} \text{ with } R_S = 100 \text{ k}\Omega & \text{DC} \ / \ 50/60 \text{ Hz} \ / \ \\ \hline \text{Measuring range} & & \\ \hline \text{Overload capacity} & & \\ \hline \text{Measurement accuracy} & 2 \ \% & \\ \hline \text{Voltage response value} & & \\ \hline \end{array}$                                                        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c c} U_{NGR} \text{ with } R_S = 100 \text{ k}\Omega & \text{DC} \ / \ 50/60 \text{ Hz} \ / \ \\ \text{Measuring range} & & \\ \text{Overload capacity} & & \\ \text{Measurement accuracy} & 2 \ \% & \\ \text{Voltage response value} & & \\ \text{Response delay, ground-fault relay} & & \\ \end{array}$                                          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /<br>Measuring range<br>Overload capacity<br>Measurement accuracy 2 %<br>Voltage response value<br>Response delay, ground-fault relay<br>Response delay, trip relay (configurable)                                                                                                                      | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)                                                                                                                              | $\begin{array}{l} 103200 \text{ Hz;} > (4.3 / \sqrt{3}) \dots (25 / \sqrt{3}) \text{ kV} \\ 1.2 \text{ x } U_{\text{NGR non}} \\ 2 \text{ x } U_{\text{NGR non}} \text{ for 10:} \\ 0 \text{ of } U_{\text{NGR nom}} \text{ with } U_{\text{NGR nom}} = (U_{\text{sys} (L-1)} / \sqrt{3}) \\ 1090 \% U_{\text{NGR non}} \\ \leq 40 \text{ ms } (\pm 10 \text{ ms}) \\ 100 \text{ ms} \dots 48 \text{ h, } \propto 100 \text{ ms} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)   Tolerance ttrip when set to   RMS                                                                                          | $\begin{array}{c} 103200 \text{ Hz;} > (4.3 \ / \sqrt{3}) \(25 \ / \sqrt{3}) \text{ kV} \\ 1.2 \ x \ U_{NGR non} \\ 2 \ x \ U_{NGR for 10} \\ 0 \ of \ U_{NGR nom} \text{ with } U_{NGR nom} = (U_{Sys} \ (L-1) \ / \sqrt{3}) \\ 1090 \ \% \ U_{NGR non} \\ \leq 40 \ \text{ms} \ (\pm 10 \ \text{ms}) \\ 100 \ \text{ms}48 \ \text{h}, \\ \sim \\ -200 \ \text{ms} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)   Tolerance ttrip when set to                                                                                                | $\begin{array}{ll} 103200 \text{ Hz; } > (4.3 \ / \ \sqrt{3}) \(25 \ / \ \sqrt{3}) \text{ kl} \\ 1.2 \ x \ U_{\text{NGR non}} \\ 2 \ x \ U_{\text{NGR non}} \ \text{for 10} \\ 0 \ \text{of } U_{\text{NGR nom}} \ \text{with } U_{\text{NGR nom}} = (U_{\text{sys}} \ (L-L) \ / \ \sqrt{3}) \\ 1090 \ \% \ U_{\text{NGR nom}} \\ \leq 40 \ \text{ms} \ (\pm 10 \ \text{ms}) \\ 100 \ \text{ms} \48 \ \text{h}, \\ \sim \\ -200 \ \text{ms} \\ 0 \ +150 \ \text{ms} \ (\text{filter time}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range   Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)   Tolerance ttrip when set to   RMS   Fundamental   Harmonics                                                              | $\begin{array}{ll} 103200 \text{ Hz; } > (4.3 \ / \sqrt{3}) \(25 \ / \sqrt{3}) \text{ kV} \\ 1.2 \ x \ U_{NGR non} \\ 2 \ x \ U_{NGR for 10} \\ 0 \ of \ U_{NGR nom} \ with \ U_{NGR nom} = (U_{sys} \ (L-1) \ / \sqrt{3}) \\ 1090 \ \% \ U_{NGR non} \\ \leq 40 \ \text{ms} \ (\pm 10 \ \text{ms}) \\ 100 \ \text{ms} \48 \ \text{h}, \\ \sim \\ -200 \ \text{ms} \\ 0+150 \ \text{ms} \ (filter time) \\ 0+150 \ \text{ms} \ (filter time) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range   Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)   Tolerance ttrip when set to   RMS   Fundamental                                                                          | $\begin{array}{ll} 103200 \text{ Hz;} > (4.3 / \sqrt{3}) \dots (25 / \sqrt{3}) \text{ kV} \\ 1.2 \text{ x } U_{\text{NGR non}} \\ 2 \text{ x } U_{\text{NGR non}} \\ 0 \text{ of } U_{\text{NGR nom}} \text{ with } U_{\text{NGR non}} = (U_{\text{Sys}} (L-1) / \sqrt{3}) \\ 1090 \% U_{\text{NGR non}} \\ \leq 40 \text{ ms } (\pm 10 \text{ ms}) \\ 100 \text{ ms} \dots 48 \text{ h}, \\ \sim \\ -20 \dots 0 \text{ ms} \\ 0 \dots + 150 \text{ ms } (\text{filter time}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U <sub>NGR</sub> with R <sub>S</sub> = 100 kΩ DC / 50/60 Hz /   Measuring range   Overload capacity   Measurement accuracy 2 %   Voltage response value   Response delay, ground-fault relay   Response delay, trip relay (configurable)   Tolerance ttrip when set to   RMS   Fundamental   Harmonics   DC (mmunity in case of active R <sub>NGR</sub> measurement | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \text{ Hz; } > (4.3 \ / \sqrt{3}) \ \dots (25 \ / \sqrt{3}) \text{ kV} \\ 1.2 \ x \ U_{NGR \ non} \\ 2 \ x \ U_{NGR \ non} \\ 0 \ of \ U_{NGR \ nom} \ with \ U_{NGR \ nom} = (U_{sys} \ (L-L) \ / \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ non} \\ \leq 40 \ ms \ (\pm 10 \ ms) \\ 100 \ ms \dots 48 \ h, \\ \sim \\ -20\dots 0 \ ms \\ 0 \dots + 150 \ ms \ (filter \ time) \\ 0 \dots + 150 \ ms \ (filter \ time) \\ DC \ \pm 12 \ V \\ DC \ \pm 60 \ V \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \text{ Hz}; > (4.3 \ / \ \sqrt{3}) \ \dots (25 \ / \ \sqrt{3}) \text{ kl} \\ 1.2 \ x \ U_{NGR \ nor} \\ 2 \ x \ U_{NGR \ nor} \ 10 \\ 2 \ x \ U_{NGR \ nor} \ 10 \\ 0 \ of \ U_{NGR \ norm} \ with \ U_{NGR \ norm} = (U_{sys} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \\ \leq 40 \ ms \ (\pm 10 \ ms \\ 100 \ ms \ \ 48 \ h, \ \propto \\ -20\dots 0 \ ms \\ 0 \ \ + 150 \ ms \ (filter \ time \\ 0 \ \ + 150 \ ms \ (filter \ time \\ 0 \ L \ \pm 12 \ Mc \\ DC \ \pm 12 \ Mc \\ DC \ \pm 10 \ Mc \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \mbox{ Hz; } > (4.3 \ / \ \sqrt{3}) \ \dots (25/\ \sqrt{3}) \ \ kl\\ 1.2 \ x \ U_{NGR \ nor} \\ 2 \ x \ U_{NGR \ nor} \ 10 \ . \\ 2 \ x \ U_{NGR \ nor} \ \ (10) \ . \\ 0 \ of \ U_{NGR \ norm} \ \ with \ U_{NGR \ norm} = (U_{sys} \ (L-L)/\ \sqrt{3} \ \ 10 \ . \\ . \ . \\ 90 \ \ \% \ \ U_{NGR \ norm} \ \ (L-L)/\ \sqrt{3} \ \ (L-L)/\ \ (L-L)/\ \sqrt{3} \ \ (L-L)/\ \ (L-L$ |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \mbox{ Hz; } > (4.3 \ / \ \sqrt{3}) \ \dots (25 \ / \ \sqrt{3}) \ k\ \sqrt{3} \\ 1.2 \ x \ U_{NGR \ non} \\ 2 \ x \ U_{NGR \ non} \ 10 \ 2 \ x \ U_{NGR \ non} \\ 0 \ of \ U_{NGR \ nom} \ with \ U_{NGR \ nom} = (U_{sys} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ non} \\ \leq 40 \ ms \ (\pm 10 \ ms) \\ 100 \ ms \ \dots 48 \ h, \ \infty \\ -20\dots 0 \ ms \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ DC \ \pm 12 \ Mot \ DC \ \pm 60 \ Mot \ Mot \ Mot \ NC \ max \ 10 \ ms \\ DC \ \pm 10 \ Mot \ Mot \ NC \ NC \ NC \ NC \ Mot \ NC \ NC \ Mot \ NC \ Mot \ NC \ N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \mbox{ Hz; } > (4.3 \ / \ \sqrt{3}) \ \dots (25 \ / \ \sqrt{3}) \ k\ \sqrt{3} \\ 1.2 \ x \ U_{NGR \ non} \\ 2 \ x \ U_{NGR \ non} \ 10 \ 2 \ x \ U_{NGR \ non} \\ 0 \ of \ U_{NGR \ nom} \ with \ U_{NGR \ nom} = (U_{sys} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ non} \\ \leq 40 \ ms \ (\pm 10 \ ms) \\ 100 \ ms \ \dots 48 \ h, \ \infty \\ -20\dots 0 \ ms \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ 0 \ \dots + 150 \ ms \ (filter \ time) \\ DC \ \pm 12 \ Mot \ DC \ \pm 60 \ Mot \ Mot \ Mot \ NC \ max \ 10 \ ms \\ DC \ \pm 10 \ Mot \ Mot \ NC \ NC \ NC \ NC \ Mot \ NC \ NC \ Mot \ NC \ Mot \ NC \ N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \text{ Hz}; > (4.3 \ / \ \sqrt{3}) \ \dots (25 \ / \ \sqrt{3}) \text{ kl} \\ 1.2 \ x \ U_{NGR \ nor} \\ 2 \ x \ U_{NGR \ nor} \ 10 \\ 2 \ x \ U_{NGR \ norm} \ with \ U_{NGR \ norm} = (U_{sys} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \\ \leq 40 \ ms \ (\pm 10 \ ms \\ 100 \ ms \ \ 48 \ h, \ \propto \\ -20\dots 0 \ ms \\ 0\dots + 150 \ ms \ (filter \ time \\ 0\dots + 150 \ ms \ (filter \ time \\ 0\dots + 150 \ ms \ (filter \ time \\ DC \ \pm 12 \ \ DC \ \pm 60 \ \ N \\ DC \ \pm 60 \ \ N \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10\dots 3200 \mbox{ Hz; } > (4.3 \ / \ \sqrt{3}) \ \dots (25 \ / \ \sqrt{3}) \ kl \\ 1.2 \ x \ U_{NGR \ norm} \\ 2 \ x \ U_{NGR \ norm} \ for \ 10 \\ 2 \ x \ U_{NGR \ norm} \ with \ U_{NGR \ norm} = (U_{sys} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ U_{NGR \ norm} \ (L-L) \ / \ \sqrt{3} \\ 10\dots 90 \ \% \ (L-L) \ / \ \sqrt{3} \\ 100 \ ms. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 103200 \text{ Hz}; > (4.3 \ / \sqrt{3}) \(25 \ / \sqrt{3}) \text{ kV} \\ 1.2 \ x \ U_{NGR \ non} \\ 2 \ x \ U_{NGR \ non} \ 2 \ x \ U_{NGR \ non} \\ 2 \ x \ U_{NGR \ non} \ (10 \ 2 \ x) \ U_{NGR \ non} \\ 0 \ of \ U_{NGR \ non} \ with \ U_{NGR \ non} \ (U_{Sys} \ (1-1) \ / \sqrt{3}) \\ 1090 \ \% \ U_{NGR \ non} \ (10 \ x) \ (1-1) \ / \sqrt{3} \\ \leq 40 \ ms \ (\pm 10 \ ms) \\ 100 \ ms48 \ h, \propto \\ -200 \ ms \\ 0 \ + 150 \ ms \ (filter \ time) \\ 0 \ + 150 \ ms \ (filter \ time) \\ 0 \ + 150 \ ms \ (filter \ time) \\ DC \ \pm 12 \ V \\ DC \ \pm 60 \ V \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 103200 \text{ Hz}; > (4.3 / \sqrt{3}) \dots (25 / \sqrt{3}) \text{ kV} \\ 1.2 \text{ x } U_{\text{NGR non}} \\ 2 \text{ x } U_{\text{NGR for 10}} \\ 2 \text{ x } U_{\text{NGR nom}} \text{ with } U_{\text{NGR nom}} = (U_{\text{sys}}(_{L-L})/\sqrt{3}) \\ 1090 \% U_{\text{NGR nom}} \\ \leq 40 \text{ ms} (\pm 10 \text{ ms}) \\ 100 \text{ ms} \dots 48 \text{ h}, \\ \hline \\ -200 \text{ ms} \\ 0+150 \text{ ms} (\text{filter time}) \\ 0+150 \text{ ms} (\text{filter time}) \\ 0+150 \text{ ms} (\text{filter time}) \\ DC \pm 12 \text{ V} \\ DC \pm 60 \text{ V} \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Analogue output (M+)

| Operating princi | ble                                                                   | linear                                      |
|------------------|-----------------------------------------------------------------------|---------------------------------------------|
| Functions        |                                                                       | I <sub>NGR</sub> , R <sub>NGR</sub>         |
| Current          | $020 \text{ mA} (\le 600 \Omega), 420 \text{ mA} (\le 600 \Omega), 0$ | $\dots$ 400 $\mu$ A ( $\leq$ 4 k $\Omega$ ) |
| Voltage          | $010 \text{ V} (\geq 1 \text{ k}\Omega)$                              | , 2…10 V (≥ 1 kΩ)                           |
| Tolerance relate | t to the current/voltage end value                                    | ±20 %                                       |

#### Ground-fault, NGR, trip relay

| Switching elements                                  | changeover contacts                  |
|-----------------------------------------------------|--------------------------------------|
| Operating mode                                      | configurable fail-safe/non-fail-safe |
| Electrical endurance, number of cycles              | 10,000                               |
| Switching capacity                                  | 2000 VA / 150 W                      |
| Contact data acc. to IEC 60947-5-1                  |                                      |
| Rated operational voltage AC                        | 250 V/250 V                          |
| Utilisation category                                | AC-13/AC-14                          |
| Rated operational current AC                        | 5 A/3 A                              |
| Rated operational current AC (for UL applications)  | 3 A/3 A                              |
| Rated operational voltage DC                        | 220/110/24 V                         |
| Utilisation category                                | DC12                                 |
| Rated operational current DC                        | 0.1/0.2/1 A                          |
| Minimum current                                     | 1 mA at AC/DC > 10 V                 |
| Environment/EMC                                     |                                      |
| EMC immunity (IEC 61000-6-2 / IEC 60255-26 Ed. 3.0) | DIN EN 61000-6-2                     |
| EMC amission (IEC 61000 6 4 / IEC 602EE 26 Ed 2 0)  | DIN EN 61000 6 4                     |

| EMC emission (IEC 61000-6-4 / IEC 60255-26 Ed. 3.0) | DIN EN 61000-6-4 |
|-----------------------------------------------------|------------------|
| Operating temperature                               | -40…+60 °C       |
| Operating temperature for UL applications           | -40…+60 °C       |
| Transport                                           | −40…+85 °C       |
| Long-term storage                                   | −40…+70 °C       |
| Humidity                                            | ≤ 98 %           |

| (with respect to temperature and rel. humidity)                                                |                                   |
|------------------------------------------------------------------------------------------------|-----------------------------------|
| Stationary use (IEC 60721-3-3)                                                                 | 3K2                               |
| Transport (IEC 60721-3-2)                                                                      | 2K1                               |
| Long-term storage (IEC 60721-3-1)                                                              | 1K2                               |
| Classification of mechanical conditions acc. to<br>IEC 60721 / IEC 60255-21 / DIN EN 60068-2-6 |                                   |
| Stationary use                                                                                 | 3M                                |
| Transport                                                                                      | 2M4                               |
| Long-term storage                                                                              | 1M12                              |
| Connection                                                                                     |                                   |
| Screw-type terminals                                                                           |                                   |
| Tightening torque                                                                              | 0.50.6 Nm (57 lb-in               |
| Stripping length                                                                               | 7 mn                              |
| Recommended connecting cables                                                                  | see overview in the manua         |
| rigid/flexible                                                                                 | 0.22.5 mm <sup>2</sup> (AWG 2413  |
| flexible with ferrule with/without plastic sleeve                                              | 0.252.5 mm <sup>2</sup> (AWG 2413 |
| Multiple conductor rigid                                                                       | 0.21 mm <sup>2</sup> (AWG 2418    |
| Multiple conductor flexible                                                                    | 0.21.5 mm² (AWG 2416              |
| Multiple conductor, flexible with ferrule without plastic sleeve                               | 0.251 mm <sup>2</sup> (AWG 2418   |
| Multiple conductor, flexible with TWIN ferrule with plastic sleev                              | e 0.51,5 mm² (AWG 2116            |
| Push-wire terminal X1                                                                          |                                   |
| Stripping length                                                                               | 10 mn                             |
| rigid/flexible                                                                                 | 0.21.5 mm <sup>2</sup> (AWG 2416  |
| flexible with ferrule without plastic sleeve                                                   | 0.251.5 mm <sup>2</sup> (AWG 2416 |
| flexible with ferrule with plastic sleeve 0                                                    | ).250.75 mm² (AWG 2418            |

#### **Other**

| Operating mode                                           | continuous operation   |
|----------------------------------------------------------|------------------------|
| Mounting                                                 | display-oriented       |
| Operating altitude                                       | ≤ 2000 m AMSL          |
| Degree of protection, internal components (DIN EN 60529) | IP30                   |
| Flammability class                                       | UL 94V-0               |
| Protective coating measurement equipment                 | SL1307, UL file E80315 |
| Documentation number                                     | D00373                 |
| Weight                                                   | < 500 g                |

## Dimension diagram NGRM5...

Dimensions in mm (in)



## Ordering information

| Туре    | System type | Supply voltage <b>U</b> s / Frequency range Hz | Art. No.  |
|---------|-------------|------------------------------------------------|-----------|
| NGRM500 | HRG         | AC 48240 V, 4070 Hz<br>DC 48240 V              | B94013500 |
| NGRM550 | LRG         |                                                | B94013550 |

## Suitable system components

| Description                      | Voltage/Current  | Туре            | Art. No.                |
|----------------------------------|------------------|-----------------|-------------------------|
| Measuring current<br>transformer | AC up to 30 A    | CTAC35          | B98110007               |
|                                  |                  | CTAC60          | B98110017               |
|                                  |                  | CTAS50          | B98110009               |
|                                  |                  | CTAS80          | B98110010               |
|                                  |                  | CTAS120         | B98110011               |
|                                  | AC/DC up to 10 A | CTUB103-CTBC35  | B78120030               |
|                                  |                  | CTUB103-CTBC60  | B78120031               |
|                                  | AC/DC up to 25 A | CTUB103-CTBC120 | B78120032               |
|                                  | AC >301000 A     | CTB31CTB51      | B980860xx <sup>1)</sup> |

<sup>1)</sup> All types and ordering informations of this series are available on our website

| Description                  | Voltage <b>U</b> sys | Туре     | Art. No.  |
|------------------------------|----------------------|----------|-----------|
| CD-series<br>coupling device | 400690 V             | CD1000   | B98039010 |
|                              | 4001000 V            | CD1000-2 | B98039053 |
|                              | 10004200 V           | CD5000   | B98039011 |
|                              | 430014550 V          | CD14400  | B98039054 |
|                              | 1455125000 V         | CD25000  | B98039055 |

| Description                  | Length (m) | Туре      | Art. No.  |
|------------------------------|------------|-----------|-----------|
| Connecting cables<br>CTUB103 | 1          | CTXS-100  | B98110090 |
|                              | 2,5        | CTXS-250  | B98110091 |
|                              | 5          | CTXS-500  | B98110092 |
|                              | 10         | CTXS-1000 | B98110093 |

| Description                                                           | max. connected<br>measuring<br>current<br>transformers | Туре                    | Art. No.  |
|-----------------------------------------------------------------------|--------------------------------------------------------|-------------------------|-----------|
| Voltage supply for<br>AC/DC measuring current<br>transformers CTUB103 | 2                                                      | STEP-PS/1 AC/24 DC/0.5  | B94053110 |
|                                                                       | 7                                                      | STEP-PS/1 AC/24 DC/1.75 | B94053111 |
|                                                                       | 17                                                     | STEP-PS/1 AC/24 DC/4.2  | B94053112 |



Bender GmbH & Co. KG • Germany Londorfer Straße 65 • 35305 Grünberg Tel.: +49 6401 807-0 • info@bender.de www.bender.de

**USA, Mexico, Central America** • Exton PA, USA 800.356.4266 / 610.383.9200 • info@bender.org www.bender.org

**Canada** • Missisauga ON, Canada 800.243.2438 / 905.602.9990 info@bender-ca.com • www.bender-ca.com

**South America** • Santiago de Chile +59 2.2933.4211 • info@bender-latinamerica.com www.bender-latinamerica.com © Bender GmbH & Co. KG, Germany Subject to change! The specified standards take into account the edition valid until 06.2023 unless otherwise indicated.

