
ISOMETER® IR155-3203/IR155-3204

Aparato de vigilancia de aislamiento para sistemas de accionamiento DC aislados de tierra (sistemas IT) en vehículos eléctricos

Version V004

ISOMETER® IR155-3203/IR155-3204

Aparato de vigilancia de aislamiento para sistemas de accionamiento DC aislados de tierra (sistemas IT) en vehículos eléctricos

Características del aparato

- Adecuado para sistemas de 12V y 24V
- · Autotest automático
- Medición continua de la resistencia de aislamiento 0...10 $M\Omega$
 - Tiempo de respuesta < 2 s tras la conexión para el primer estado de aislamiento determinado (SST)
- Tiempo de respuesta < 20 s para la resistencia de aislamiento medida (DCP)
- Adaptación automática a la capacidad de derivación de red existente (≤1 μF)
- Detección de derivaciones a tierra y de interrupciones del contacto a tierra
- Vigilancia de aislamiento de fallos de aislamiento AC y DC para sistemas aislados de tierra (sistemas IT) 0...1000 V
- Detección de subtensión para tensiones por debajo de 500 V (ajustable en fábrica por Bender)
- Salidas protegidas contra cortocircuitos para:
 - Detección de fallos (salida high-side)
 - Valor de medida (PWM 5...95 %) y estado (f = 10...50 Hz) con excitador high-side o low-side invertido (salida M_{HS}/M_{LS})
- Pintura de protección (SL 1307 FLZ)

Homologaciones

ATENCION

Tenga en cuenta las medidas preventivas para los equipos con riesgo de daño electrostático. Utilice solo el equipo en puntos de trabajo acondicionados a tal efecto.

ATENCION

El equipo vigila ALTA TENSIÓN. Cuidado con la alta tensión al manipular el aparato.

Descripción del producto

El ISOMETER® IR155-3203/IR155-3204 vigila el aislamiento entre el conductor AT (HV) del sistema eléctrico de tracción ($U_n = DC \ 0...1000 \ V$) y la tierra de medida (masa del vehículo Kl.31). Mediante la técnica de medida patentada se vigila el aislamiento en el lado de tensión continua y de tensión alterna del sistema eléctrico de tracción. Fallo de aislamiento son avisados de forma fiable, también con elevadas interferencias producidas por procesos de mando del motor (aceleración, recuperación de energía, etc.).

Dada la forma constructiva compacta y la técnica de medida optimizada, el equipo es ideal para su uso en vehículos híbridos o completamente eléctricos.

El equipo cumple con las elevadas exigencias medioambientales de la industria del automóvil (p. ej. temperatura, vibraciones...).

Las alarmas (fallo de aislamiento en el sistema AT (HV), fallo de conexión o función del vigilante de aislamiento) son avisados a través de la salida con separación galvánica (Nivel-Alto o Nivel-Bajo). La salida está compuesta por dos salidas de estado (OK_{HS}) y una salida de valor de medida (M_{HS}/M_{LS}).

La salida de estado señaliza fallos así como el estado "correcto"del sistema. La salida del valor de medida da el valor actual de aislamiento. También es posible identificar en la salida del valor de medida entre distintos avisos de fallo o estados del equipo, ya que están codificadas en la frecuencia base.

Funcionamiento

La monitorización de la conexión de los terminales de tierra E/KE está especificada para $R_F \le 4 \ M\Omega$ si el ISOMETER® está conectado como se muestra en la ilustración de aplicación de la página 3.

Tras conectar la tensión de alimentación, el equipo realiza un proceso de inicialización y arranca la medida SST. Tras Max. 2 segundos, el equipo da el primer valor de aislamiento estimado, iniciando la medida DCP (medida continua). Fallos en la conexión o de función son detectados automáticamente y avisados.

Durante el servicio se realiza una autocomprobación cada 5 minutos. Las salidas no se ven influidas por esta prueba.

 $Si R_F > 4 \, M\Omega \, y$ los bornes de alimentación (Kl.15/Kl.31) no están aislados galvánicamente de la conexión a tierra (Kl.31), es posible que el control de conexión de los bornes de tierra (Kl.15/Kl.31) no funcione según lo previsto.

Normas

Normas y reglamentos	correspondientes*.
IEC 61557-8	2014-12
IEC 61010-1	2010-06
IEC 60664-1	2004-04
ISO 6469-3	2011-12
ISO 23273-3	2006-11
ISO 16750-1	2006-08
ISO 16750-2	2010-03
ISO 16750-4	2010-04
E1 (Reglamento ECE no	10 revisión 5)
acc. 72/245/EWG/EEC	2009/19/EG/EC
DIN EN 60068-2-38	Z/AD:2010
DIN EN 60068-2-30	Db:2006
DIN EN 60068-2-14	Nb:2010
DIN EN 60068-2-64	Fh:2009
DIN EN 60068-2-27	Ea:2010

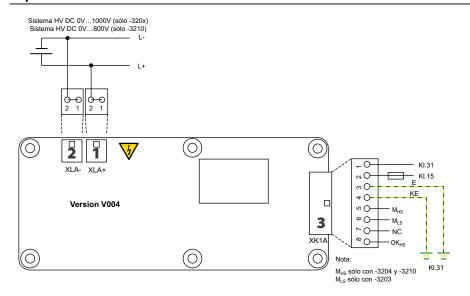
* Conexión según norma

El aparato ha sido sometido a un proceso de ensayo del sector del automóvil, en combinación con exigencias superiores específicas del cliente, según ISO16750-x.

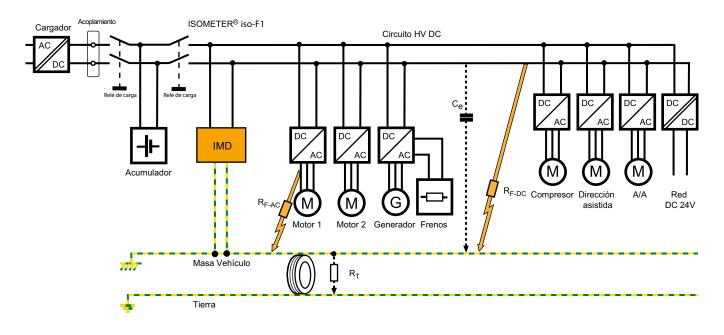
Para cumplir con las exigencias de la norma IEC 61557-8, el cliente deberá incorporar la función de una advertencia óptica así como una función de prueba del aparato.

El aparato no ofrece una protección contra picos de tensión Load-Dump superiores a 50 V. Es necesaria una protección central adicional.

Abreviaturas

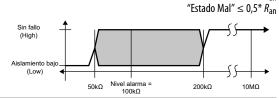

DCP Direct Current Pulse (método de medida continuo)

SST Speed Start Measuring (medida de arranque rápido)

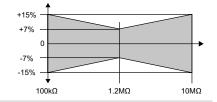


Esquemas de conexiones

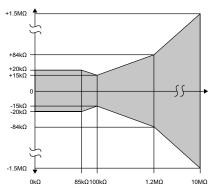
1	Conector	enchufable XLA+		
	Pin 1+2	L+	Tensión de red	
2	Conector	enchufable XLA-		
	Pin 1+2	L-	Tensión de red	
3	Conector	de red X	K1A	
	Pin 1	Kl. 31	Conexión a masa/ masa de la electrónica	
	Pin 2	Kl. 15	Tensión de alimentación	
	Pin 3	Kl. 31	Conexión a masa	
	Pin 4	Kl. 31	Conexión a masa (conductor separado)	
	Pin 5	M _{HS}	Salida de valor de medida, PWM (high-side)	
	Pin 6	M _{LS}	Salida de valor de medida, PWM (low-side)	
	Pin 7	n.c.		
	Pin 8	<i>OK</i> _{HS}	Salida de estado (high-side)	


Typische Anwendung

Technische Daten


Coordinación de aislamiento según IEC 6	0664-1
Separación segura (aislamiento reforzado)	
entre (L	+/L-) - (Kl. 31, Kl. 15, E, KE, M _{HS} , M _{LS} , OK _{HS})
Prueba de tensión	AC 3500 V/1 min
Alimentación/Sistema IT vigilado	
Tensión de alimentación <i>U</i> s	DC 1036 V
Corriente de servicio máx. I _S	150 mA
Corriente máx. / _k	2 A
	6 A/2 ms corriente de conexiór
Margen de tensión HV (L $+$ /L $-$) $U_{\rm n}$	AC 01000 V (valor punta)
	0660 V RMS (10 Hz1 kHz)
	DC 01000 \
Consumo propio	< 2 W
Valores de respuesta	
Valor de respuesta histéresis (DCP)	25 %
Valor de respuesta R _{an}	100 kΩ1 MΩ
Detección de subtensión	0500 \
Margen de medida	
Margen de medida	010 MΩ
Detección de subtensión	0500 V; ajuste estándar: 0 V (inactivo
Desviación de medida relativa con SST (≤ 2 s)	uii, , ui
Desviación de medida relativa con DCP	085 kΩ ▶ ±20 kΩ
(Ajuste estándar 100 kΩ)	100 kΩ10 MΩ ▶ ±15%
Desviación de medida relativa salida M (frecu	
	(10 Hz; 20 Hz; 30 Hz; 40 Hz; 50 Hz
Desviación de medida relativa con	
	≥ 100 V \blacktriangleright ±10 %; con U_n ≥300 V \blacktriangleright ±5 %
Desviación de medida relativa (SST)	"Estado Bien" $\geq 2 * R_{al}$
	#F . I M I# . O F* D

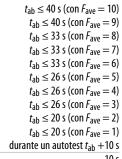
Desviación de medida relativa con DCP


100 k Ω ...10 M Ω ±15 % 100 k Ω ...1,2 M Ω \blacktriangleright ±15 % to ±7 % 1,2 M Ω \blacktriangleright ±7 % 1,2...10 M Ω \blacktriangleright ±7% to ±15 %

.2...10 MΩ ► ±7% t0 ±15 %
10 MΩ ► ±15%

Desviación de medida absoluta

0 Ω...85 kΩ ▶ ±20 kΩ



Comportamiento de tiempo

comportamiento de tiempo	
Tiempo de respuesta t _{an} (OK _{HS} ; SST)	$t_{an} \le 2 \text{ s (típ.} < 1 \text{ s con } U_n > 100 \text{ V})$
Tiempo de respuesta t _{an} (OK _{HS} ; DCP)	
(al conmutar de $R_F = 10 \text{ M}\Omega$ a $R_{an}/2$; con $C_e = 10 \text{ M}\Omega$	$= 1 \mu F; U_n = DC 1000 V)$
	$t_{\rm an} \le 20 \rm s (con F_{\rm ave} = 10^*)$
	$t_{an} \leq 17.5 \text{ s (con } F_{ave} = 9)$
	$t_{an} \le 17.5 \text{ s (con } F_{ave} = 8)$
	$t_{an} \le 15 \text{ s (con } F_{ave} = 7)$
	$t_{an} \le 12,5 \text{ s (con } F_{ave} = 6)$
	$t_{an} \le 12,5 \text{ s (con } F_{ave} = 5)$
	$t_{an} \leq 10 \text{ s (con } F_{ave} = 4)$
	$t_{an} \le 7.5 \text{ s (con } F_{ave} = 3)$
	$t_{\rm an} \le 7.5 \mathrm{s} (\mathrm{con} F_{\rm ave} = 2)$
	$t_{an} \le 5 \text{ s } (\text{con } F_{ave} = 1)$
	durante el autotest t_{an} +10 s

Tiempo de medida de retorno t_{ab} (OK_{HS} ; DCP)

(al conmutar de $R_{\rm an}/2$ a $R_{\rm F}=10~{\rm M}\Omega$; con $C_{\rm e}=1~{\rm \mu F}$; $U_{\rm n}={\rm DC}~1000~{\rm V}$)

Duración del autotest

(cada 5 minutos; deberá añadirse a t_{an}/t_{ab})

Circuito de medida

Capacidad de derivación de red $C_{\rm e}$	≤ 1 µF
Margen de medida reducido y mayor tiempo d	e medida con C_e > 1 μ F
	(p.ej. margen máx. 1 MΩ @ 3 μF,
	$t_{\rm an} = 68$ s al conmutar de $R_{\rm F}$ 1 M Ω a $R_{\rm an/2}$)
Tensión de medida U _M	±40 V
Corriente de medida $I_{\rm M}$ con $R_{\rm F} = 0$	±33 μA
Impedancia Z _i con 50 Hz	≥ 1,2 MΩ
Resistencia interna R _i	≥ 1,2 MΩ

^{*} $F_{ave} = 10$ recomendado para vehículos eléctricos/híbridos

Salida

Salida de medida (M)

$M_{\rm HS}$ conmuta a $U_{\rm S}$ – 2 V (3204)

(necesita resistencia externa tipo pull-down hacia borna 31 2,2 kΩ)

M_{LS} conmuta a borna 31 +2 V (3203)

(necesita resistencia externa tipo pull-up hacia borna 15 2,2 kΩ)

0 Hz ► Hi > cortocircuito hacia U_b +(borna 15); Low > IMD off o corctocircuito a borna 31

10 Hz ▶ estado normal medición de aislamiento DCP; se inicia 2 segundos tras la conexión; primera medición de aislamiento con éxito a \leq 17,5 s PWM activo 5...95 %

20 Hz ➤ con subtensión medición de aislamiento (medida continua); se inicia 2 segundos tras la conexión; PWM activo 5...95 % primera medición de aislamiento con éxito a ≤17,5 s detección de subtensión 0...500 V (ajustable en fábrica por Bender)

30 Hz ► medición de inicio rápido medición de aislamiento (solo evaluación bien/mal) se inicia directamente después de la conexión ≤ 2 s; PWM 5...10 % (bien) y 90...95 % (mal)

40 Hz ► fallo de equipo

Se ha detectado un fallo de equipo; PWM 47,5 . . . 52,5 %

50 Hz ► fallo de conexión a tierra Fallo detectado en el cable de conexión a tierra (borna 31)

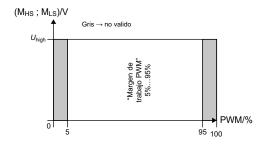
PWM 47,5...52,5 %

Salida de estado (OKHS)

 OK_{HS} conmuta a $U_s - 2 \text{ V}$

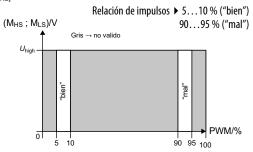
(necesita resistencia externa tipo pull-down hacia la borna 31 2,2 kΩ)

High ▶ ningún error; R_F > valor de respuesta Low ▶ resistencia de aislamiento ≤ valor de respuesta registrado; Fallo de equipo; fallo de conexión a tierra Subtensión detectada o aparato desconectado

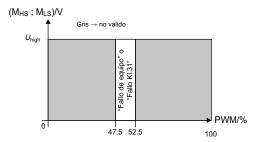

Principio de funcionamiento del excitador PWM

Estado "Normal" y "Subtensión detectada" (10 Hz; 20 Hz)

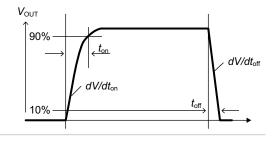
Relación de impulsos 5% = >50 MΩ (∞) Relación de impulsos 50% = 1200 kΩ Relación de impulsos 95% = 0 kΩ


$$R_{\rm F} = \frac{90\% \text{ x } 1200 \text{ k}\Omega}{dc_{\rm meas} - 5\%}$$
 -1200 k Ω

 $dc_{\text{meas}} = \text{relación de impulsos medida (5 %...95 %)}$


Principio de funcionamiento del excitador PWM

Estado "SST" (30 Hz)



Principio de funcionamiento del excitador PWM

Estado "Fallo de equipo" y "Fallo de borna 31" (40 Hz; 50 Hz;)
Relación de impulsos ▶ 47,5...52,5 %

Corriente de carga I _L	80 mA
Tiempo de conexión ▶ hasta 90 % V _{out}	máx. 125 μs
Tiempo de desconexión ▶ hasta 10 % V _{out}	máx. 175 μs
Velocidad de subida de tensión ► 1030 % V _{out}	máx. 6 V/μs
Velocidad de caída de tensión ► 7040% V _{out}	máx. 8 V/μs
Comportamiento de tiempo 3204 (invertido respecto a 3203)	

CEM

Protección contra descarga	< 50 V
Procedimiento de medida	Técnica DCP de Bender
Creación de la media del factor	
Fave (salida M)	110 (ajustado de fábrica: 10)
Protección ESD	
Descarga de contactos — directamente en las bornas	≤ 10 kV
Descarga de contactos — indirectamente al ambiente	≤ 25 kV
Descarga de aire — derivación con placa de circuitos	≤ 6 kV

Conexión

Conector enchufable

TYCO-MICRO MATE-N-LOK

1 x 2-1445088-8

(b. 31, b.15, E, KE, M_{HS}, M_{LS}, OK_{HS}

2 x 2-1445088-2 (L+, L-); la unión entre los 2 pins de conexión correspondientes en L+o Lsólo debe utilizarse como redundancia. ¡No adecuado para "paso en bucle"!

Contactos de crimpado

TYCO-MICRO MATE-N-LOK Gold

14 x 1-794606-1 Sección de cable: AWG 20...24

Carcasa con contactos Crimp TYCO-MICRO MATE-N-LOK receptor HSG single R -1445022-8 TYCO-MICRO MATE-N-LOK receptor HSG single R -1445022-2

Tree micho mate il confeceptor fisa singie il 1445022

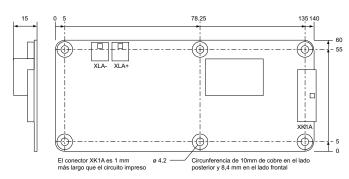
Datos generales

Pinza crimpadora necesaria (TYCO)	91501-1
Modo de servicio/posición de montaje	Servicio permanente/cualquiera
Margen de temperatura	-40+105°C
Fallo de tensión	≤ 2 ms
Clase de inflamabilidad según UL94	V 0

Fijación

Tornillos metálicos M4 con arandelas entre la cabeza del tornillo y la placa de circuitos Torx, T20 con un par de apriete máximo de 4 Nm para los tornillos. Además una presión máxima de 10 Nm sobre la placa de circuitos en los puntos de fijación.

Los kits de montaje y de conectores enchufables no están incluidos, pero están disponibles como accesorios. El diámetro máximo de los puntos de fijación es de 10 mm.


Al fijar el aparato debe asegurarse un aislamiento suficiente entre el aparato y el vehículo o resp. los puntos de fijación (mín. 11,4 mm respecto a otras piezas). Cuando el aparato es fijado sobre una superficie metálica o sobre una base conductora, éste debe estar conectado al potencial de tierra (b. 31; masa del vehículo).

Flexión	máx. 1% de la longitud o del ancho de la placa de circuitos
Recubrimiento	Pintura de capa gruesa
Peso	52 g ±2 g

Esquema de dimensiones

Datos de medidas en mm

Dimensiones de Placa de circuitos (L x B x H) 140 x 60 x 15 mm

Datos para el pedido

Parámetros	Valor de respuesta R _{an}	F ave	Detección de subtensión	Salida de valor de medida	Tipo	Referencia
Predeterminado fijo	100 kΩ	10	300 V	Low-side	IR155-3203	B91068138V4
			0 V (inactivo)	High-side	IR155-3204	B91068139V4
Ajustable según	100 kΩ1 MΩ	1 10	0 V500 V	Low-side	IR155-3203	B91068138CV4
indicaciones del cliente		110		High-side	IR155-3204	B91068139CV4

Accesorios

Denominación	Referencia	
Kit de fijación	B91068500	
Kit de conectores enchufables IR155-32xx	B91068501	

Ejemplo de pedido

$$\begin{split} & \text{IR155-3204-100k}\Omega\text{-0V} + \text{B91068139V4} \\ & \text{IR155-3204-200k}\Omega\text{-100V} + \text{B91068139CV4} \end{split}$$

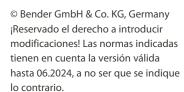
El pedido debe incluir los parámetros de ajuste de respuesta y de mínima tensión.

Bender GmbH & Co. KG • Alemania Londorfer Straße 65 • 35305 Grünberg Tel.: +49 6401 807-0 info@bender.de • www.bender.de

Bender Iberia, S.L.U.

San Sebastián de los Reyes • +34 913 751 202 info@bender.es • www.bender.es

South America, Central America, Caribbean +34 683 45 87 71 • info@bender-latinamerica.com


 $+34\,683\,45\,87\,71 \bullet info@bender-latinamerica.com\\www.bender-latinamerica.com$

Perú

+51 9 4441 1936 info.peru@ bender-latinamerica.com www.bender-latinamerica.com

Chile • Santiago de Chile +56 2.2933.4211 info@bender-cl.com • www.bender-cl.com

Mexico • Ciudad de Mexico +52 55 7916 2799 / +52 55 4955 1198 info@bender.com.mx • www.bender.com.mx

