

isoEV425/ isoEV425HC mit Ankoppelgerät AGH420

Isolationsüberwachungsgerät für ungeerdete

DC-Stromkreise (IT-Systeme)

zur Ladung von Elektrofahrzeugen

Software-Version: D0430 V2.xx/D0640 V2.xx (isoEV425) D0586 V2.xx (isoEV425HC)

Bender GmbH & Co. KG

Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de

Web: http://www.bender.de

© Bender GmbH & Co. KG

Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Herausgebers. Änderungen vorbehalten!

Fotos: Bender Archiv.

Inhaltsverzeichnis

1. Wichtig zu wissen

•••		9	
	1.1	Hinweise zur Benutzung des Handbuchs	6
	1.2	Technische Unterstützung: Service und Support	7
	1.2.1	First-Level-Support	7
	1.2.2	Repair-Service	7
	1.2.3	Field-Service	8
	1.3	Schulungen	9
	1.4	Lieferbedingungen	9
	1.5	Kontrolle, Transport und Lagerung	9
	1.6	Gewährleistung und Haftung	10
	1.7	Entsorgung	11
2.	Sicher	heitshinweise	12
	2.1	Sicherheitshinweise allgemein	12
	2.2	Arbeiten an elektrischen Anlagen	12
	2.3	Bestimmungsgemäße Verwendung	13
3.	Funkti	on	14
	3.1	Gerätemerkmale	14
	3.2	Funktionsbeschreibung	15
	3.2.1	Überwachung des Isolationswiderstands	16
	3.2.2	Überwachung auf Unter- bzw. Überspannung	
	3.2.3	Selbsttest/Fehlercodes	17
	3.2.4	Funktionsstörung	19
	3.2.5	Meldezuordnung der Alarmrelais K1/K2	20
	3.2.6	Mess- und Ansprechzeiten	20
	3.2.7	Passwortschutz (on, OFF)	22
	3.2.8	Werkseinstellung FAC	22
	3.2.9	Externe, kombinierte Test- bzw. Reset-Taste T/R	22

	3.2.10	Fehlerspeicher	22
	3.2.11	Historienspeicher HiS	23
		Schnittstelle/Protokolle	
4.	Monta	ge, Anschluss und Inbetriebnahme	25
	4.1	Montage	25
	4.2	Anschlussbild	27
	4.3	Inbetriebnahme	29
5.	Bedien	ung des Geräts	30
	5.1	Display-Elemente	31
	5.2	Menü-Übersicht	32
	5.3	Menü "AL"	33
	5.3.1	Ansprechwerteinstellung	33
	5.4	Menü "out"	34
	5.4.1	Relais Arbeitsweise-Konfiguration	34
	5.4.2	Relais-Meldezuordnung "r1" und "r2" und LED-Zuordnung	34
	5.4.3	Fehlerspeicher-Konfiguration	35
	5.4.4	Schnittstellen-Konfiguration	36
	5.5	Menü "t"	37
	5.5.1	Zeit-Konfiguration	37
	5.6	Menü "SEt"	37
	5.6.1	Funktions-Konfiguration	37
	5.7	Messwertanzeige und Historienspeicher	38
6.	Datenz	zugriff mittels BMS-Protokoll	40

7.	Datenz	zugriff mittels Modbus RTU-Protokoll	41
	7.1	Modbus Register aus ISOMETER® auslesen	41
	7.1.1	Befehl des Masters an das ISOMETER®	41
	7.1.2	Antwort des ISOMETER®s an den Master	42
	7.2	Modbus-Register schreiben (Parametrierung)	42
	7.2.1	Befehl des Masters an das ISOMETER®	42
	7.2.2	Antwort des ISOMETER®s an den Master	43
	7.3	Exception-Code	43
	7.3.1	Aufbau des Exception-Codes	43
8.	Modbu	us-Registerbelegung des ISOMETER®s	44
	8.1	Gerätespezifische Datentypen des ISOMETER®s	50
	8.1.1	Gerätename	50
	8.1.2	Messwerte	50
	8.1.2.1	Float = Gleitkommawerte der Kanäle	51
	8.1.2.2	AT&T = Alarm-Typ und Test-Art (intern/extern)	52
	8.1.2.3	R&U = Bereich und Einheit	53
	8.1.3	Alarmzuordnung der Relais	54
	8.2	Kanalbeschreibungen	55
9.	IsoDat	a-Datenstring	57
10	. Techr	nische Daten	59
	10.1	Tabellarische Darstellung	59
	10.2	Normen, Zulassungen und Zertifizierungen	66
	10.3	Bestellangaben	67

1. Wichtig zu wissen

1.1 Hinweise zur Benutzung des Handbuchs

Dieses Handbuch richtet sich an Fachpersonal der Elektrotechnik und Elektronik!

Bewahren Sie dieses Handbuch zum Nachschlagen griffbereit auf.

Um Ihnen das Verständnis und das Wiederfinden bestimmter Textstellen und Hinweise im Handbuch zu erleichtern, haben wir wichtige Hinweise und Informationen mit Symbolen gekennzeichnet. Die folgenden Beispiele erklären die Bedeutung dieser Symbole:

Das Signalwort bezeichnet eine Gefährdung mit einem hohen Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge hat.

Das Signalwort bezeichnet eine Gefährdung mit einem mittleren Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge haben kann.

Das Signalwort bezeichnet eine Gefährdung mit einem niedrigen Risikograd, die, wenn sie nicht vermieden wird, eine geringfügige oder mäßige Verletzung oder Sachschaden zur Folge haben.

Dieses Symbol bezeichnet Informationen, die Ihnen bei der **optimalen Nutzung** des Produktes behilflich sein sollen.

1.2 Technische Unterstützung: Service und Support

Für die Inbetriebnahme und Störungsbehebung bietet Bender an:

1.2.1 First-Level-Support

Technische Unterstützung telefonisch oder per E-Mail für alle Bender-Produkte

• Fragen zu speziellen Kundenapplikationen

Inbetriebnahme

• Störungsbeseitigung

Telefon: +49 6401 807-760*

Fax: +49 6401 807-259

nur in Deutschland: 0700BenderHelp (Telefon und Fax)

E-Mail: support@bender-service.com

1.2.2 Repair-Service

Reparatur-, Kalibrier-, Update- und Austauschservice für Bender-Produkte

- Reparatur, Kalibrierung, Überprüfung und Analyse von Bender-Produkten
- Hard- und Software-Update von Bender-Geräten
- Ersatzlieferung für defekte oder falsch gelieferte Bender-Geräte
- Verlängerung der Garantie von Bender-Geräten mit kostenlosem Reparaturservice im Werk bzw. kostenlosem Austauschgerät

Telefon: +49 6401 807-780** (technisch)/

+49 6401 807-784**, -785** (kaufmännisch)

Fax: +49 6401 807-789

E-Mail: repair@bender-service.com

Geräte für den Reparaturservice senden Sie bitte an folgende Adresse:

Bender GmbH, Repair-Service,

Londorfer Str. 65.

35305 Grünberg

1.2.3 Field-Service

Vor-Ort-Service für alle Bender-Produkte

- Inbetriebnahme, Parametrierung, Wartung, Störungsbeseitigung für Benderprodukte
- Analyse der Gebäudeinstallation (Netzqualitäts-Check, EMV-Check, Thermografie)
- Praxisschulungen für Kunden

Telefon: +49 6401 807-752**, -762 **(technisch)/

+49 6401 807-753** (kaufmännisch)

Fax: +49 6401 807-759

E-Mail: fieldservice@bender-service.com

Internet: www.bender-de.com

*365 Tage von 07:00 - 20:00 Uhr (MEZ/UTC +1)

**Mo-Do 07:00 - 16:00 Uhr, Fr 07:00 - 13:00 Uhr

1.3 Schulungen

Bender bietet Ihnen gerne eine Einweisung in die Bedienung des Geräts an. Aktuelle Termine für Schulungen und Praxisseminare finden Sie im Internet unter www.bender-de.com -> Fachwissen -> Seminare.

1.4 Lieferbedingungen

Es gelten die Liefer- und Zahlungsbedingungen der Firma Bender.

Für Softwareprodukte gilt zusätzlich die vom ZVEI (Zentralverband Elektrotechnik- und Elektronikindustrie e. V.) herausgegebene "Softwareklausel zur Überlassung von Standard-Software als Teil von Lieferungen, Ergänzung und Änderung der Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie".

Die Liefer- und Zahlungsbedingungen erhalten Sie gedruckt oder als Datei bei Bender.

1.5 Kontrolle, Transport und Lagerung

Kontrollieren Sie die Versand- und Geräteverpackung auf Beschädigungen und vergleichen Sie den Packungsinhalt mit den Lieferpapieren. Bei Transportschäden benachrichtigen Sie bitte umgehend Bender.

Die Geräte dürfen nur in Räumen gelagert werden, in denen sie vor Staub, Feuchtigkeit, Spritz- und Tropfwasser geschützt sind und in denen die angegebenen Lagertemperaturen eingehalten werden.

1.6 Gewährleistung und Haftung

Gewährleistungs- und Haftungsansprüche bei Personen- und Sachschäden sind ausgeschlossen, wenn sie auf eine oder mehrere der folgenden Ursachen zurückzuführen sind:

- Nicht bestimmungsgemäße Verwendung des Geräts.
- Unsachgemäßes Montieren, Inbetriebnehmen, Bedienen und Warten des Geräts.
- Nichtbeachten der Hinweise im Handbuch bezüglich Transport, Inbetriebnahme, Betrieb und Wartung des Geräts.
- Eigenmächtige bauliche Veränderungen am Gerät.
- Nichtbeachten der technischen Daten.
- Unsachgemäß durchgeführte Reparaturen und die Verwendung vom Hersteller nicht empfohlener Ersatzteile oder nicht empfohlenen Zubehörs.
- Katastrophenfälle durch Fremdkörpereinwirkung und höhere Gewalt.
- Die Montage und Installation mit nicht empfohlenen Gerätekombinationen.

Dieses Handbuch, insbesondere die Sicherheitshinweise, sind von allen Personen zu beachten, die mit dem Gerät arbeiten. Darüber hinaus sind die für den Einsatzort geltenden Regeln und Vorschriften zur Unfallverhütung zu beachten.

1.7 Entsorgung

Beachten Sie die nationalen Vorschriften und Gesetze zur Entsorgung des Geräts. Fragen Sie Ihren Lieferanten, wenn Sie nicht sicher sind, wie das Altgerät zu entsorgen ist.

Im Bereich der Europäischen Gemeinschaft gelten die Richtlinie über Elektround Elektronik-Altgeräte (WEEE-Richtlinie) und die Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektround Elektronikgeräten (RoHS-Richtlinie). In Deutschland sind diese Richtlinien durch das Elektro- und Elektronikgerätegesetz (ElektroG) umgesetzt. Danach gilt:

- Elektro- und Elektronik-Altgeräte gehören nicht in den Hausmüll.
- Batterien oder Akkumulatoren gehören nicht in den Hausmüll, sondern sind gemäß den gesetzlichen Bestimmungen zu entsorgen.
- Altgeräte anderer Nutzer als privater Haushalte, die als Neugeräte nach dem 13. August 2005 in Verkehr gebracht wurden, werden vom Hersteller zurückgenommen und einer fachgerechten Entsorgung zugeführt.

Weitere Hinweise zur Entsorgung von Bender-Geräten finden Sie auf unserer Homepage unter www.bender-de.com -> Service & Support.

2. Sicherheitshinweise

2.1 Sicherheitshinweise allgemein

Bestandteil der Gerätedokumentation sind neben diesem Handbuch die "Sicherheitshinweise für Bender-Produkte".

2.2 Arbeiten an elektrischen Anlagen

Alle zum Einbau, zur Inbetriebnahme und zum laufenden Betrieb eines Geräts oder Systems erforderlichen Arbeiten sind durch geeignetes **Fachpersonal** auszuführen.

Lebensgefahr durch Stromschlag!

Bei Berühren von unter Spannung stehenden Anlagenteilen besteht die Gefahr

- · eines elektrischen Schlags,
- von Sachschäden an der elektrischen Anlage,
- der Zerstörung des Geräts.

Stellen Sie vor Einbau des Geräts und vor Arbeiten an den Anschlüssen des Geräts sicher, dass die Anlage spannungsfrei ist. Beachten Sie die Regeln für das Arbeiten an elektrischen Anlagen.

Wird das Gerät außerhalb der Bundesrepublik Deutschland verwendet, sind die dort geltenden Normen und Regeln zu beachten. Eine Orientierung kann die europäische Norm EN 50110 bieten.

2.3 Bestimmungsgemäße Verwendung

Das ISOMETER® der Serie isoEV425 bzw. isoEV425HC überwacht den Isolationswiderstand $R_{\rm F}$ von ungeerdeten AC/DC-Hauptstromkreisen (IT-Systemen) mit Netznennspannungen von 3(N)AC, AC/DC 0 ... 690 V oder DC 0 ... 1000 V. Die Hauptanwendungsgebiete sind ungeerdete DC-Ladestationen (Mode 4 nach IEC 61851-23/FDIS) für Elektrofahrzeuge (IT-Systemen) mit Netznennspannungen von DC 0 ... 1000 V. Die in 3(N)AC, AC/DC-Systemen vorhandenen gleichstromgespeisten Komponenten haben keinen Einfluss auf das Ansprechverhalten, wenn mindestens ein Laststrom von DC 10 mA fließt. Durch die separate Versorgungsspannung $U_{\rm S}$ ist auch die Überwachung eines spannungslosen Systems möglich. Die maximal zulässige Netzableitkapazität $C_{\rm e}$ beträgt 5 µF (für isoEV425) bzw. 20 µF (für isoEV425HC). Das ISOMETER® wird stets mit dem Ankoppelgerät AGH420 betrieben.

Eine andere oder darüber hinaus gehende Verwendung gilt als nicht bestimmungsgemäß.

Zwischen L1/+ und L2/- muss für die korrekte Funktion des ISOMETERS® ein Netzinnenwiderstand \leq 1 k Ω über die Quelle (z. B. Transformator) oder die Last vorhanden sein.

3. Funktion

3.1 Gerätemerkmale

- Überwachung für DC-Ladestationen (Mode 4 nach IEC 61851-23/FDIS[©] IEC) zur Ladung von Elektrofahrzeugen
- Messung der Verlagerungsspannungen Netz gegen Erde (L+/PE und L-/PE)
- Automatische Anpassung an die Netzableitkapazität $C_{\rm e}$ bis 5 $\mu {\rm F}$ bzw. 20 $\mu {\rm F}$
- Automatischer Geräteselbsttest mit Anschlussüberwachung
- Anlauf-, Ansprech- und Rückfallverzögerung einstellbar
- Zwei getrennt einstellbare Ansprechwert-Bereiche von 1 k Ω ...500 k Ω (Alarm 1, Alarm 2)
- Alarme werden über LEDs ("AL1", "AL2"), ein Display und Alarmrelais ("K1", "K2") ausgegeben
- Ruhe- oder Arbeitsstromverhalten der Relais wählbar
- Messwertanzeige über multifunktionales LC-Display
- · Fehlerspeicherung aktivierbar
- RS-485 (galvanisch getrennt) mit folgenden Protokollen:
 - BMS-Schnittstelle (Bender-Messgeräte-Schnittstelle) zum Datenaustausch mit anderen Bender-Komponenten
 - Modbus RTU
 - IsoData (für kontinuierliche Datenausgabe)
- Passwortschutz gegen unbefugtes Ändern von Parametern

3.2 Funktionsbeschreibung

Das ISOMETER® misst den Isolationswiderstand $R_{\rm F}$ sowie die Netzableitkapazität $C_{\rm e}$ zwischen dem zu überwachenden Netz (L1/+, L2/-) und Erde (PE). Der Effektivwert der Netznennspannung $U_{\rm n}$ zwischen L1/+ und L2/- sowie die Verlagerungsspannungen $U_{\rm L1e}$ (zwischen L1/+ und Erde) und $U_{\rm L2e}$ (zwischen L2/- und Erde) werden ebenfalls gemessen.

Ab einer Mindestnetznennspannung ermittelt das ISOMETER® den fehlerbehafteten Leiter L1/+/L2/-, d. h. die Verteilung des Isolationswiderstands zwischen den Leitern L1/+ und L2/- und zeigt dies durch ein positives oder negatives Vorzeichen zum Isolationswiderstandsmesswert an. Der Wertebereich des fehlerbehafteten Leiters liegt bei $\pm 100\,\%$:

Anzeige	Bedeutung
	einseitiger Fehler an Leiter L2/-
0 %	symmetrischer Fehler
+100 %	einseitiger Fehler an Leiter L1/+

Die Teilwiderstände können aus dem Gesamtisolationswiderstand R_F und dem fehlerbehafteten Leiter ("R %") mit folgender Formel berechnet werden:

Fehler an Leiter L1/+
$$R_{L1F} = (200 \% * R_F)/(100 \% + R \%)$$

Fehler an Leiter L2/- $R_{L2F} = (200 \% * R_F)/(100 \% - R \%)$

Ebenfalls ab einer Mindestnetznennspannung berechnet das ISOMETER® den Isolationswiderstand $R_{\rm UGF}$ aus den Verlagerungsspannungen $U_{\rm L1e}$ und $U_{\rm L2e}$. Er ist ein Näherungswert für einseitige Isolationsfehler und kann als schnellere Tendenzanzeige für den Fall, dass sich das ISOMETER® an ein stark verändertes Verhältnis von $R_{\rm F}$ und $C_{\rm e}$ anpassen muss, dienen.

Es besteht die Möglichkeit, den ermittelten Fehler bzw. den fehlerbehafteten Leiter per Menü einem Alarmrelais zuzuweisen. Verletzen die Werte $R_{\rm F}$ oder $U_{\rm n}$ die aktivierten Ansprechwerte des Menüs "AL", erfolgt eine Meldung über die LEDs sowie die Relais "K1" und "K2" gemäß den Einstellungen in der Meldezuordnung im Menü "out". Dort kann auch die Arbeitsweise der Relais (n.o./n.c.) eingestellt sowie der Fehlerspeicher "M" aktiviert werden.

Verletzen die Werte $R_{\rm F}$ oder $U_{\rm n}$ ihren jeweiligen Rückfallwert (Ansprechwert zuzüglich Hysterese) ununterbrochen nicht mehr für die Dauer $t_{\rm off}$, schalten die Alarmrelais wieder in die Ausgangslage zurück und die Alarm-LEDs "AL1"/"AL2" erlöschen. Ist die Fehlerspeicherung aktiviert, bleiben die Alarmrelais in Alarmstellung und die LEDs leuchten, bis die Reset-Taste "R" betätigt oder die Versorgungsspannung $U_{\rm S}$ unterbrochen wurde.

Mit der Test-Taste "T" kann die Gerätefunktion geprüft werden. Die Geräteparametrierung erfolgt über das LC-Display sowie die frontseitigen Bedientasten und kann durch ein Passwort geschützt werden. Das Gerät kann auch über den BMS-Bus, z. B. mittels eines BMS-Ethernet-Gateway (COM465IP) oder eines Modbus RTU, parametriert werden.

3.2.1 Überwachung des Isolationswiderstands

Im Ansprechwert-Menü "AL" (siehe Tabelle in Kapitel 5.3) befinden sich die beiden Parameter "R1" und "R2" für die Überwachung des Isolationswiderstands $R_{\rm F}$. Der Wert "R1" kann nur größer als der Wert "R2" eingestellt werden. Erreicht oder unterschreitet der Isolationswiderstand $R_{\rm F}$ die aktivierten Werte "R1" oder "R2", führt dies zu einer Alarmmeldung. Überschreitet $R_{\rm F}$ die Werte "R1" oder "R2" zuzüglich des Hysteresewerts (siehe Tabelle in Kapitel 5.3.1), wird der Alarm gelöscht.

3.2.2 Überwachung auf Unter- bzw. Überspannung

Im Ansprechwert-Menü "AL" (siehe Tabelle in Kapitel 5.3) können die beiden Parameter ("U <" und "U >") zur Überwachung der Netznennspannung U_n aktiviert bzw. deaktiviert werden. Der maximale Unterspannungswert ist durch den Überspannungswert begrenzt.

Der Effektivwert der Netznennspannung U_n wird überwacht. Erreicht oder unterschreitet bzw. erreicht oder überschreitet die Netznennspannung U_n die Grenzwerte ("U <" oder "U >"), führt dies zu einem Alarm. Das Überschreiten der für das ISOMETER® maximal zulässigen Netznennspannung U_n löst auch bei deaktiviertem Überspannungsgrenzwert eine Alarmmeldung aus. Der Alarm wird gelöscht, wenn die Grenzwerte zuzüglich der Hysterese (siehe Kapitel 5.3.1) nicht mehr verletzt werden.

3.2.3 Selbsttest/Fehlercodes

Die eingebaute Selbsttestfunktion prüft die Funktion des Isolationsüberwachungsgeräts und mit der Anschlussüberwachung die Verbindungen zum zu überwachenden Netz. Die Alarmrelais werden bei einem Selbsttest nicht geschaltet. Dies kann mit dem Parameter "test" in der Meldezuordnung (Menü "out", Kapitel 5.4.2) geändert werden. Für die Dauer des Tests wird im Display "tES" angezeigt.

Bei erkannten Funktionsstörungen oder fehlenden Verbindungen blinken die LEDs "ON"/"AL1"/"AL2". Im Display werden die entsprechenden Fehlercodes ("E.xx") angezeigt und das Relais "K2" schaltet.

Die Relaiszuordnung zu einem Gerätefehler ist mit dem Parameter "Err" im Menü "out" in der Meldezuordnung einstellbar.

Fehlercodes

Sollte wider Erwarten ein Gerätefehler auftreten, erscheinen im Display Fehlercodes. Nachfolgend sind einige beschrieben:

Fehlercode	Bedeutung					
E.01	Anschlussfehler PE Die Verbindung der Anschlüsse "E" oder "KE" zu Erde ist unterbrochen. Maßnahme: Anschluss prüfen, Fehler beseitigen. Der Fehlercode löscht sich nach Beseitigung des Fehlers selbsttätig.					
E.02	Anschlussfehler Netz (L1/+ , L2/-), Der Netzinnenwiderstand ist zu hochohmig, die Verbindung der Anschlüsse "L1/+" oder "L2/-" zum Netz unterbrochen oder das überwachte DC-Netz hat bei $U_n > 100 \text{ V}$ die falsche Polarität. Maßnahme: Anschluss prüfen, Fehler beseitigen. Der Fehlercode löscht sich nach Beseitigung des Fehlers selbsttätig.					

E.05	Messtechnikfehler/Kalibrierung ungültig für die aktuelle Software-Version				
	Überschreitung der nach Datenblatt maximal zulässigen Netzableitkapazität $C_{\rm e}$				
E.07	Maßnahme:				
	Gerät für die vorhandene Netzableitkapazität C_e nicht geeignet: Gerät deinstallieren.				
	Kalibrierfehler während dem Gerätetest				
E.08	Maßnahme:				
E.08	Wenn nach der Überprüfung der Geräte-Anschlüsse der Fehler weiterhin auftritt, liegt ein Fehler im Gerät vor.				

Interne Gerätefehler "E.xx" können durch äußere Störungen oder interne Hardwarefehler auftreten. Sollte die Fehlermeldung nach einem Neustart des Geräts oder dem Zurücksetzen auf Werkseinstellung (Menüpunkt "FAC") wieder auftreten, muss das Gerät zur Reparatur.

Nach Beseitigung des Fehlers schalten die Alarmrelais selbständig bzw. durch Drücken der Reset-Taste in die Ausgangslage zurück.

Der Selbsttest kann einige Minuten dauern. Mit der Parametereinstellung "S.Ct = off" im Menü "SEt" kann er für den Gerätestart unterdrückt werden, damit das ISOMETER® nach dem Anlegen der Versorgungsspannung U_s schneller in den Messbetrieb gelangt.

Automatischer Selbsttest

Bei Verwendung des iso EV425 nach UL2231 muss der automatische Selbsttest deaktiviert sein. Ein manueller Selbsttest ist durchzuführen.

Das Gerät führt nach dem Zuschalten der Versorgungsspannung $U_{\rm S}$ und danach alle 24 h (einstellbar: off, 1 h, 24 h) einen Selbsttest durch.

Manueller Selbsttest

Das Drücken einer Test-Taste > 1,5 s startet einen Selbsttest. Während des Drückens der internen Test-Taste "T" werden alle für dieses Gerät verfügbaren Display-Elemente angezeigt.

Anschlussüberwachung

Die vom Selbsttest aufgerufene Anschlussüberwachung überprüft zum einen die Verbindungen der Klemmen "E" und "KE" zum Schutzleiter PE. Ein hierbei erkannter Fehler führt zur Meldung Gerätefehler ("Err") und es erscheint der Fehlercode "E.01" auf dem Display.

Mit der Netzanschlussüberwachung werden die Verbindungen der Klemmen "L1/+" und "L2/-" zum zu überwachenden Netz überprüft. Mit dem Erkennen einer Unterbrechung oder einer zu hochohmigen Verbindung zwischen L1/+ und L2/- über den Netzinnenwiderstand wird ebenfalls der Gerätefehler ("Err") gesetzt und es erscheint der Fehlercode "E.02" auf dem Display. Da die Überprüfung des Netzanschlusses unter Umständen durch Störungen aus dem Netz lange Zeit in Anspruch nehmen kann oder sogar fehlerhafte Ergebnisse liefert, ist es möglich, die Netzanschlussüberwachung mit dem Parameter "nEt" im Menü "SEt" abzuschalten.

3.2.4 Funktionsstörung

Neben dem oben beschriebenen Selbsttest werden einige Funktionen des Isolationsüberwachungsgeräts im laufenden Betrieb kontinuierlich überprüft. Sollte hier ein Fehler erkannt werden, wird der Gerätefehler ("Err") gesetzt. Im Display erscheint "E.xx" als Kennung für den Fehlertyp xx und die LEDs "ON"/"AL1"/"AL2" blinken.

Sollte der Fehler nach einem Geräteneustart oder dem Zurücksetzen auf die Werkseinstellung wiederholt auftreten, sollte Kontakt zum Bender-Service aufgenommen werden.

3.2.5 Meldezuordnung der Alarmrelais K1/K2

Den Alarmrelais können über das Menü "out" wahlweise die Meldungen "Gerätefehler", "Isolationsfehler", "Isolationsimpedanzfehler", "Unter-/Überspannungsfehler", "Gerätetest" oder "Gerätestart mit Alarm" zugeordnet werden. Ein Isolationsfehler wird mit den Meldungen "+R1", "-R1", "+R2" und "-R2" dargestellt. Die Meldungen "+R1" und "+R2" kennzeichnen einen Isolationsfehler der dem Leiter L1/+ zugeordnet werden kann und die Meldungen "-R1" sowie "-R2" kennzeichnen einen Isolationsfehler, der dem Leiter L2/- zugeordnet werden kann. Ist eine Zuordnung zu einem Leiter, z. B. wegen eines symmetrischen Isolationsfehlers, nicht möglich, werden die jeweiligen "+"- und "-"-Meldungen gemeinsam gesetzt.

Die Meldung "test" kennzeichnet einen Selbsttest.

Die Meldung "S.AL" kennzeichnet einen sogenannten "Gerätestart mit Alarm". Mit dem Parameterwert "S.AL = on" startet das ISOMETER® nach dem Anlegen der Versorgungsspannung $U_{\rm s}$ mit dem Isolationsmesswert $R_{\rm F}=0~\Omega$ und setzt alle aktivierten Alarme. Erst wenn die Messwerte aktuell und keine Grenzwerte verletzt sind, werden die Alarme gelöscht. In der Werkseinstellung mit "S.AL = off" startet das ISOMETER® ohne Alarm.

Es wird empfohlen, den Parameterwert "S.AL" für beide Relais identisch einzustellen.

3.2.6 Mess- und Ansprechzeiten

Die Messzeit ist die Zeit, die für die Erfassung eines Messwerts notwendig ist. Sie spiegelt sich in der Ansprecheigenzeit $t_{\rm ae}$ wider.

Sie wird für den Isolationswiderstandsmesswert hauptsächlich von der notwendigen Messpulsdauer bestimmt, die abhängig vom Isolationswiderstand $R_{\rm F}$ und der Netzableitkapazität $C_{\rm e}$ des zu überwachenden Netzes ist. Der Messpuls wird von dem im ISOMETER® integrierten Messpulsgenerator erzeugt. Synchron dazu verhalten sich die Messzeiten für $C_{\rm e}$, $U_{\rm L1e}$, $U_{\rm L2e}$ und R %. Netzstörungen können zu verlängerten Messzeiten führen. Dagegen ist die Messzeit der Netznennspannungsmessung $U_{\rm n}$ unabhängig und erheblich kürzer.

Gesamtansprechzeit tan

Die Gesamtansprechzeit t_{an} ist die Summe der Ansprecheigenzeit t_{ae} und der Ansprechverzögerungzeit t_{on} .

Ansprecheigenzeit tae

Die Ansprecheigenzeit t_{ae} ist die Zeit, die das ISOMETER® für das Bestimmen des Messwerts benötigt. Sie ist für den Isolationswiderstandsmesswert abhängig vom Isolationswiderstand $R_{\rm F}$ und der Netzableitkapazitäte $C_{\rm e}$. Hohe Netzableitkapazitäten sowie Netzstörungen führen zu verlängerten Ansprecheigenzeiten.

Ansprechverzögerung ton

Die Ansprechverzögerung $t_{\rm on}$ wird im Menü "t" mit dem Parameter "ton" einheitlich für alle Meldungen eingestellt. Diese Verzögerung kann für die Störunterdrückung bei kurzen Messzeiten eingesetzt werden.

Die Signalisierung eines Alarms erfolgt erst, wenn für die Dauer von $t_{\rm on}$ unuterbrochen eine Grenzwertverletzung des jeweiligen Messwerts vorliegt. Jede wiederkehrende Grenzwertverletzung innerhalb der Zeit $t_{\rm on}$ startet die Ansprechverzögerung "ton" neu.

Jede in der Meldezuordnung aufgeführte Alarmmeldung hat einen eigenen Timer für $t_{\rm on}$.

Rückfallverzögerung toff

Die Rückfallverzögerung $t_{\rm off}$ kann im Menü "t" mit dem Parameter "toff" einheitlich für alle Meldungen eingestellt werden.

Die Signalisierung eines Alarms wird solange aufrechterhalten, bis ununterbrochen für die Dauer von $t_{\rm off}$ keine Grenzwertverletzung (inklusive Hysterese) des jeweiligen Messwerts mehr vorliegt. Nach jedem wiederkehrenden Wegfall der Grenzwertverletzung innerhalb der Zeit $t_{\rm off}$ startet die Rückfallverzögerung $t_{\rm off}$ neu. Jede in der Meldezuordnung aufgeführte Alarmmeldung hat einen eigenen Timer für $t_{\rm off}$.

Anlaufverzögerung t

Nach Zuschalten der Versorgungsspannung U_5 wird die Alarmausgabe für die im Parameter "t" eingestellte Zeit (0...10 s) unterdrückt.

3.2.7 Passwortschutz (on, OFF)

Wurde der Passwortschutz aktiviert (on), können Einstellungen nur nach Eingabe des korrekten Passworts (0...999) vorgenommen werden.

3.2.8 Werkseinstellung FAC

Nach Aktivieren der Werkseinstellung werden alle geänderten Einstellungen, mit Ausnahme der Schnittstellenparameter, auf den Auslieferungszustand zurückgesetzt.

3.2.9 Externe, kombinierte Test- bzw. Reset-Taste T/R

Reset = Drücken des externen Tasters < 1,5 s

Reset mit anschließendem Test = Drücken des externen Tasters > 1,5 s

Messfunktion stoppen = Dauerhaftes Drücken des externen Tasters

Die Stopp-Funktion kann ebenfalls über einen Schnittstellen-Befehl ausgelöst und in diesem Fall nur über die Schnittstelle zurückgesetzt werden. Mit einer externen Test/Reset-Taste darf nur ein ISOMETER® angesteuert werden. Eine galvanische Parallelschaltung mehrerer Test- oder Reset-Eingänge für Sammelprüfungen von Isolationsüberwachungsgeräten ist nicht erlaubt.

3.2.10 Fehlerspeicher

Der Fehlerspeicher kann mit dem Parameter "M" im Menü "out" aktiviert oder deaktiviert werden. Bei aktiviertem Fehlerspeicher bleiben alle auflaufenden Alarmmeldungen der LEDs und Relais bis zum Löschen über die Reset-Taste (intern) oder dem Abschalten der Versorgungsspannung U_s erhalten.

3.2.11 Historienspeicher HiS

Beim Auftreten des ersten Fehlers nach dem Löschen des Historienspeichers, werden alle Messwerte (die in der Tabelle in Kapitel 5.7 angehakt sind) im Historienspeicher gespeichert. Diese Daten können mit Hilfe des Menüpunkts "HiS" ausgelesen werden. Um einen neuen Datensatz aufzeichnen zu können, muss der Historienspeicher zuvor per Menü mit "Clr" gelöscht werden.

3.2.12 Schnittstelle/Protokolle

Das ISOMETER® benutzt die serielle Hardware-Schnittstelle RS-485 mit folgenden Protokollen:

BMS

Das BMS-Protokoll ist wesentlicher Bestandteil der Bender-Messgeräte-Schnittstelle (BMS-Bus-Protokoll). Die Datenübertragung erfolgt mit ASCII-Zeichen.

Modbus RTU

Modbus RTU ist ein Anwendungsschicht-Messaging-Protokoll und bietet Master/Slave-Kommunikation zwischen Geräten, die zusammen über Bussysteme und Netzwerke verbunden sind. Modbus-RTU-Nachrichten haben eine 16-Bit-CRC (Cyclic-Redundant Checksum), die die Zuverlässigkeit gewährleistet.

IsoData

Das ISOMETER® sendet kontinuierlich mit einem Takt von ca. 1 s einen ASCII-Datenstring. Eine Kommunikation mit dem ISOMETER® ist in diesem Mode nicht möglich und es dürfen keine weiteren Sender an der RS-485-Busleitung angeschlossen sein. Der ASCII-Datenstring für das ISOMETER® und seine Beschreibung ist in Kapitel 9. beschrieben.

Die Geräte-Adresse, Baudrate und Parität für die Schnittstellen-Protokolle werden im Menü "out" konfiguriert.

Mit "Adr = 0", werden die Menüpunkte "Baudrate" und "Parität" im Menü nicht angezeigt und das IsoData-Protokoll ist aktiviert.

Mit einer gültigen Bus-Adresse (d. h. ungleich 0) wird der Menüpunkt "Baudrate" im Menü angezeigt. Der Parameterwert "---" für die Baudrate kennzeichnet das aktivierte BMS-Protokoll. In diesem Fall ist die Baudrate für das BMS-Protokoll mit 9 600 Baud festgelegt. Wird der Parameterwert der Baudrate ungleich "---" eingestellt, ist das Modbus-Protokoll mit einstellbarer Baudrate aktiviert.

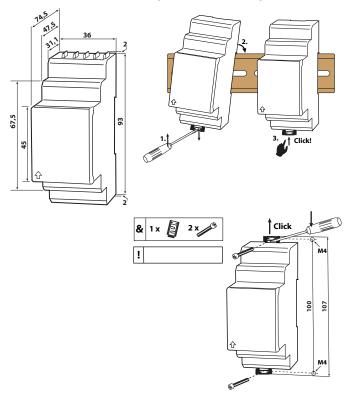
4. Montage, Anschluss und Inbetriebnahme

Gefahr eines elektrischen Schlages!

Bei Berühren von spannungsführenden nicht isolierten Leitern können Tod oder schwere Körperverletzung eintreten. Vermeiden Sie deshalb jeglichen Körperkontakt mit aktiven Leitern und beachten Sie die Regeln für das Arbeiten an elektrischen Anlagen.

4.1 Montage

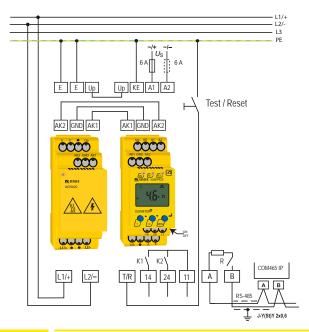
• Montage auf Hutschiene:


Rasten Sie den rückseitigen Montageclip des Geräts auf der Hutschiene so ein, dass ein sicherer und fester Sitz gewährleistet ist.

• Schraubmontage:

Bringen Sie die rückseitigen Montageclips (2. Montageclip erforderlich, siehe Bestellinformation) mittels Werkzeug in eine über das Gehäuse hinaus ragende Position. Befestigen Sie das Gerät mit zwei M4-Schrauben, siehe nachfolgende Skizze.

Maßbild, Skizze für Schraubmontage, Hutschienenmontage:



Alle Maße in mm

Die Frontplattenabdeckung ist an der mit einem Pfeil gekennzeichneten unteren Seite aufzuklappen.

4.2 Anschlussbild

Verletzungsgefahr durch Berühren heißer Oberflächen! Bei Betrieb des AGH420 an Netzspannungen > 800 V können Gehäusetemperaturen über 60 °C auftreten.

Vermeiden Sie die Berührung der Geräteflächen nach Zuschalten der Netzspannung.

Die für die Verdrahtung erforderlichen Leiterquerschnitte sind in den technischen Daten ab Seite 59 angegeben.

Legende zum Anschlussbild:

Klemme	Anschlüsse
A1, A2	Anschluss an die Versorgungsspannung U_s über Schmelzsicherung:
AI, AZ	Bei Versorgung aus IT-System beide Leitungen absichern.*
E, E, KE	Jede Klemme jeweils separat an PE anschließen:
L, L, IXL	Gleichen Leitungsquerschnitt wie bei "A1", "A2" verwenden.
L1/+, L2/-	Anschluss an das zu überwachende 3(N)AC, AC- oder DC-Netz
Up, AK1,	Klemmen des AGH420 mit den gleichnamigen Klemmen des ISOME-
GND, AK2	TER®s verbinden.
T/R	Anschluss für externe kombinierte Test- und Reset-Taste
11, 14	Anschluss Alarmrelais "K1"
11, 24	Anschluss Alarmrelais "K2"
A, B	RS-485 Kommunikationsschnittstelle mit zuschaltbarem
.,,,	Terminierungswiderstand

* Für UL-Anwendungen:

Nur 60/75°C-Kupferleitungen verwenden! Die Versorgungsspannung ist bei UL- und CSA-Applikationen zwingend über 5-A-Vorsicherungen zuzuführen.

4.3 Inbetriebnahme

 Prüfen auf korrekten Anschluss des ISOMETER®s an das zu überwachende Netz.

2. Versorgungsspannung U_s für ISOMETER® zuschalten

Das Gerät führt eine Kalibrierung, einen Selbsttest und eine Justierung auf das zu überwachende IT-Netz durch. Dieser Ablauf kann bei großen Netzableitkapazitäten bis zu 4 min dauern, danach wird der aktuelle Isolationswiderstand als Standardanzeige eingeblendet, z. B.:

Das Pulssymbol signalisiert eine störungsfreie Aktualisierung der Widerstands- und Kapazitätsmesswerte. Falls durch Störungen der Messwert nicht aktualisiert werden kann, wird das Pulssymbol ausgeblendet.

3. Starten eines manuellen Selbsttests durch Drücken der Test-Taste "T". Während des Drückens der Taste (> 1,5 s) werden alle für dieses Gerät verfügbaren Display-Elemente angezeigt. Für die Dauer des Tests blinkt der Schriftzug "tES". Ermittelte Funktionsstörungen werden als Fehlercode angezeigt (siehe Seite 17). Die Alarmrelais werden dabei nicht geprüft (Werkseinstellung). Im Menü "out" kann die Einstellung so geändert werden, dass beim manuellen Selbsttest die Relais in den Alarmzustand wechseln.

4. Werkseinstellung auf Eignung prüfen

Sind die Einstellungen für die überwachte Anlage geeignet? Liste der Werkseinstellungen, siehe Tabellen in Kapitel 5.

Funktion mit einem echten Isolationsfehler pr
üfen
 Das ISOMETER® am überwachten Netz ist z. B. mit einem daf
ür geeigneten Widerstand gegen Erde zu pr
üfen.

5. Bedienung des Geräts

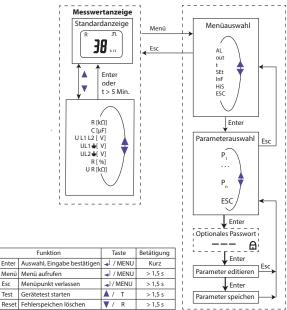
Auf den folgenden Seiten ist die Menü-Übersicht schematisch abgebildet.

Wird die Taste "MENU" für länger als 1,5 s gedrückt, erscheint das erste Menü "AL". Navigation und Einstellungen erfolgen mit den Tasten wund (Enter).

A V	Aufwärts-, Abwärtstaste: - im Menü aufwärts oder abwärts bewegen - Werte erhöhen oder verringern			
MENU	Taste MENU/Eingabe länger als 1,5 s drücken: - Menübetrieb starten oder - falls sich das Gerät bereits im Menübetrieb befindet: Menüpunkt verlassen (Esc). Ein evtl. geänderter Wert wird nicht gespeichert Taste MENU/Eingabe kürzer als 1,5 s drücken:			
	- Auswahl eines Menüpunkts bestätigenoder- geänderten Wert bestätigen			

Die jeweils einstellbaren Bereiche des Displays blinken!

5.1 Display-Elemente


Gerätefront/Displ	ay	Funktion				
	ON AL1 AL2	grün - On Zuordnung gemäß gelb - Alarm Tabelle auf Seite 34 gelb - Alarm				
R J	Ť	Aufwärts-Taste Test-Taste (> 1,5 s drücken)				
$\ \cdot \ $ $\mathbf{R}_{\mathbf{k}\Omega} \ \cdot \ $	▼ R	Abwärts-Taste Reset-Taste (> 1,5 s drücken)				
	4	ENTER				
	MENU	MENU-Taste (> 1,5 s drücken)				
	1	U : Netznennspannung $U_{\rm n}$				
T R MENU		${f R}$: Isolationswiderstand $R_{f F}$				
		C : Netzableitkapazität C _e				
	2	Überwachter Leiter				
4 2 2	3	= : Spannungsart DC				
		: Störungsfreie Messwert-				
URCL1L2 ÷ == √LVV		aktualisierung				
10(] J J J J L F		~ : Spannungsart AC				
< L.J U KW 5 5 54	4	Messwerte und Einheiten				
test onoff MAdr_L (1)	5	Passwortschutz ist aktiviert.				
9 8 7 6 5	6	Im Menübetrieb wird die Arbeitsweise des jeweiligen Alarmrelais angezeigt.				
	7	Kommunikationsschnittstelle Mit Messwert: isoData-Betrieb				
	8	Fehlerspeicher ist aktiviert.				
	9	Zustandsymbole				
	10	Kennung für Ansprechwerte und Ansprech-				
		wertverletzung				

Esc

Test

5.2 Menü-Übersicht

Menüpunkt	Parameter				
AL	Ansprechwerte abfragen und einstellen				
out	Fehlerspeicher, Alarmrelais und Schnittstelle konfigurieren				
t	t Verzögerungszeiten und Selbsttestzyklus einstellen				
SEt	Gerätesteuerung parametrieren				
InF	Software-Version abfragen				
HiS Historienspeicher abfragen und löschen					
ESC	Zur nächsthöheren Menüebene bewegen				

5.3 Menü "AL"

5.3.1 Ansprechwerteinstellung

Im Ansprechwert-Menü "AL" befinden sich die beiden Parameter "R1" und "R2" für die Überwachung des Isolationswiderstands $R_{\rm F}$. Der Wert "R1" kann nur größer als der Wert "R2" eingestellt werden. Erreicht oder unterschreitet der Isolationswiderstand $R_{\rm F}$ die aktivierten Werte "R1" oder "R2", führt dies zu einer Alarmmeldung. Überschreitet $R_{\rm F}$ die Werte "R1" oder "R2" zuzüglich des Hysteresewerts (siehe Tabelle unten), wird der Alarm gelöscht.

Ebenfalls im Ansprechwert-Menü "AL" können die beiden Parameter ("U <" und "U >") zur Überwachung der Netznennspannung $U_{\rm n}$ aktiviert bzw. deaktiviert werden. Der maximale Unterspannungswert ist durch den Überspannungswert begrenzt.

Display	Aktivierung		Einstellwert			Beschreibung
	FAC	Ke	Bereich	FAC	Ke	
R1 <	on		R2 500	500/ 200*/ 170**	kΩ	Voralarmwert R_{an1} Hys. = 25 %/min. $1k\Omega$
R2 <	on		1 R1	100	kΩ	Alarmwert R_{an2} Hys. = 25 %/min. $1k\Omega$
U <	off		30 "U>"	30	V	Alarmwert Unterspannung Hys . = 5 %/min. 5 V
U>	off		"U<" 1,15 k	1000		Alarmwert Überspannung Hys. = 5 %/min. 5 V

FAC = Werkseinstellung; **Ke** = Kundeneinstellungen

^{*} gilt für isoEV425HC

^{**} gilt für isoEV425-D49-4

5.4 Menü "out"

5.4.1 Relais Arbeitsweise-Konfiguration

R	Relais K2				Beschreibung		
Display	FAC	Ke	Display		FAC	Ke	
_/ <u>L</u> 1	n.c.		Ł	2	n.c.		Arbeitsweise Relais n.c./n.o.

FAC = Werkseinstellung; Ke = Kundeneinstellungen

5.4.2 Relais-Meldezuordnung "r1" und "r2" und LED-Zuordnung

In der Meldezuordnung werden mit der Einstellung "on" die einzelnen Meldungen/Alarme dem jeweiligen Relais zugeordnet. Die LED-Anzeige ist direkt den Meldungen zugeordnet und hat keinen Bezug zu den Relais.

Kann das Gerät einen unsymmetrischen Isolationsfehler dem entsprechenden Leiter (L1/+ oder L2/-) zuordnen, setzt es nur die jeweilige Meldung. Andernfalls werden die Meldungen "L1/+" und "L2/-" gemeinsam gesetzt.

K1 "r1"			K2 "r2"			LEDs			Meldungs- beschreibung
Display	FAC	Ke	Display	FAC	Ke	ON	AL1	AL2	
_/ _ 1Err	off		_ _2Err	on		0	0	0	Gerätefehler E.xx
r1 +R1 < Ω	on		r2 +R1 < Ω	off		•	•	0	Voralarm R1 Fehler R _F an L1/+
r1 - R1 < Ω	on		r2 -R1 < Ω	off		•	•	0	Voralarm R1 Fehler R _F an L2/-
r1 +R2 < Ω	off		r2 +R2 <Ω	on		•	0	•	Alarm R2 Fehler R _F an L1/+
r1 -R2 < Ω	off		r2 -R2 < Ω	on		•	0	•	Alarm R2 Fehler R _F an L2/-

K1 "r1"			K2 "r2"			LEDs			Meldungs- beschreibung
Display	FAC	Ke	Display	FAC	Ke	ON	AL1	AL2	
r1	off		r2	on		•	0	0	Alarm U _n
U < V			U < V))	Unterspannung
r1	off		r2	on		_	0	0	Alarm U _n
U > V	011		U > V						Überspannung
r1	off		r2	off					Manuell
test			test			•	•	•	gestarteter
test			test						Gerätetest
r1	off		r2	off					Gerätestart mit
S.AL	011		S.AL	OII					Alarm

FAC = Werkseinstellung; Ke = Kundeneinstellungen

5.4.3 Fehlerspeicher-Konfiguration

Display	FAC	Ke	Beschreibung
M	off		Memory-Funktion für Alarmmeldungen (Fehlerspeicher)

FAC = Werkseinstellung; **Ke** = Kundeneinstellungen

5.4.4 Schnittstellen-Konfiguration

Display	Ei	nstell	wert	Beschreibung		
	Bereich	FAC	Ke			
Adr	0/3 90	3	()	Bus- Adr.	Adr = 0 deaktiviert, BMS sowie Modbus aktiviert und isoData mit kontinuierlicher Datenausgabe (115k2, 8E1)	
Adr 1	/ 1,2k 115k	" "	()	Baud- rate	"": BMS-Bus (9k6, 7E1) "1,2k" "115k"> Modbus (variabel, variabel)	
Adr 2	8E1 8o1 8n1 8n2	8E1	()	Modbus	8E1 - 8 Daten-Bit, even Parity, 1 Stop-Bit 801 - 8 Daten-Bit, odd Parity, 1 Stop-Bit 8n1 - 8 Daten-Bit, no Parity, 1 Stop-Bit 8n2 - 8 Daten-Bit, no Parity, 2 Stop-Bit	

FAC = Werkseinstellung; **Ke** = Kundeneinstellungen

^{() =} Kundeneinstellung, die durch FAC nicht verändert wird.

5.5 Menü "t"

5.5.1 Zeit-Konfiguration

Display	Einstellwert		ert	Beschreibung
	Bereich	FAC	Ke	
t	0 10	0	S	Anlaufverzögerung bei Gerätestart
ton	0 99	0	s	Ansprechverzögerung K1 und K2
toff	0 99	0	s	Rückfallverzögerung K1 und K2
test	OFF/1/24	24	h	Wiederholzeit Gerätetest

FAC = Werkseinstellung; **Ke** = Kundeneinstellungen

5.6 Menü "SEt"

5.6.1 Funktions-Konfiguration

Display	Akt	ivierung	Einstellwert		wert	Beschreibung
	FAC	Ke	Bereich	FAC	Ke	
А	off		0999	0		Passwort für Parametereinstellung
nEt	on/ off*					Überprüfung Netzan- schluss bei Gerätetest
S.Ct	on					Gerätetest bei Gerätestart
FAC						Werkseinstellung (Factory Setting) ausführen
SYS						Nur für Bender-Service

 $\textbf{FAC} = Werkseinstellung; \ \textbf{Ke} = Kundeneinstellungen$

^{*} gilt für gilt für isoEV425-D49-4

5.7 Messwertanzeige und Historienspeicher

Aus allen anderen Messwertanzeigen wird nach spätestens 5 min zur Standardanzeige (Isolationswiderstand) gewechselt. Das Pulssymbol kennzeichnet einen aktuellen Messwert. Fehlt dieses Symbol, läuft die Messung und es wird der letzte gültige Messwert angezeigt. Die Symbole "<" oder ">" werden zum Messwert eingeblendet, wenn ein Ansprechwert erreicht oder verletzt bzw. der Messbereich unter- oder überschritten wurde.

HiS	Display	Beschreibung		
√	± R kΩ Л	Isolationswiderstand	R _F	
•	± K K12 J L	1 kΩ1 MΩ	Auflösung 1 kΩ	
		Netzableitkapazität	C _e	
✓	C μF J L	1 μF 10 μF (isoEV425)	Auflösung 1 μF	
		1 μF 25 μF (isoEV425HC)		
1	~ ± U L1 L2 V	Netznennspannung L1 - L2		
		0 V _{RMS} 1,20 kV _{RMS}	Auflösung 1 V _{RMS} /10 V _{RMS}	
√	i	Verlagerungsspannung L1/	+-PE U _{L1e}	
•	± U L1	0 V _{DC} ±1,20 kV _{DC}	Auflösung 1 V _{DC} /10 V _{DC}	
√	ı	Verlagerungsspannung L2/	/ PE U _{L2e}	
•	± U L2	0 V _{DC} ±1,20 kV _{DC}	Auflösung 1 V _{DC} /10 V _{DC}	
		Fehlerort in %		
		-100%+100%		
✓	± R %	Anzeige nur ab $U_n \ge 100 \text{ V}_{DC}$		
		$R_{L1F} = (200\% * R_F)/(100\% + x^0)$	%)	
		$R_{L2F} = (200\% * R_F)/(100\% - x\%)$	6)	
		Isolationswiderstand	R _{UGF}	
		1 kΩ 1 MΩ	Auflösung 1 kΩ	
		R _{UGF} ist ein Näherungswert f	ür unsymmetrische Isolati-	
	_	onsfehler und dient als Tende	enzanzeige mit kurzen	
-	$UR = k\Omega $	Messzeiten. Er wird aus der DC-Netzspannung (> 50 V)		
		bestimmt und stimmt nur be	_	
		Isolationsfehlern. Sind gleich	3	
		lationsfehler vorhanden, wird	d der Wert zu hochohmig	
		angezeigt.		

 $[\]checkmark : \ \mathsf{Messwert} \ \mathsf{kann} \ \mathsf{im} \ \mathsf{Historienspeicher} \ \mathsf{angezeigt} \ \mathsf{werden}.$

6. Datenzugriff mittels BMS-Protokoll

Das BMS-Protokoll ist wesentlicher Bestandteil der Bender-Messgeräte-Schnittstelle (BMS-Bus-Protokoll). Die Datenübertragung erfolgt mit ASCII-Zeichen.

BMS Kanal Nr.	Betriebswert	Alarm
1	R_{F}	Voralarm R1
2	R_{F}	Alarm R2
3	C _e	
4	U_{n}	Unterspannung
5	U_{n}	Überspannung
6		Anschlussfehler Erde (E.01)
7		Anschlussfehler Netz (E.02)
8		Alle anderen Gerätefehler (E.xx)
9	Fehlerort [%]	
10	U_{L1e}	
11	U_{L2e}	
12	Aktualisierungszähler	
13	R _{UGF}	
14		
15		

7. Datenzugriff mittels Modbus RTU-Protokoll

Anfragen an das ISOMETER® erfolgen mittels Funktionscode 0x03 (mehrere Register lesen) oder dem Befehl 0x10 (mehrere Register schreiben). Das ISOMETER® generiert eine funktionsbezogene Antwort und sendet diese zurück.

7.1 Modbus Register aus ISOMETER® auslesen

Mit dem Funktionscode 0x03 werden die gewünschten Words des Prozessabbilds aus den "Holding registers" des ISOMETER® ausgelesen. Dazu sind die Startadresse und die Anzahl der auszulesenden Register anzugeben. Bis zu 125 Words (0x7D) können in einer Abfrage ausgelesen werden.

7.1.1 Befehl des Masters an das ISOMETER®

Im nachfolgenden Beispiel fragt der Master vom ISOMETER® mit der Adresse 3 den Inhalt des Registers 1003 an. Das Register enthält die Kanalbeschreibung von Messkanal 1.

Byte	Name	Beispiel	
Byte 0	ISOMETER® Modbus-Adresse	0x03	
Byte 1	Funktionscode	0x03	
Byte 2, 3	Startadresse	0x03EB	
Byte 4, 5	Anzahl Register	0x0001	
Byte 6, 7	CRC16 Checksumme	0xF598	

7.1.2 Antwort des ISOMETER®s an den Master

Byte	Name	Beispiel
Byte 0	ISOMETER® Modbus-Adresse	0x03
Byte 1	Funktionscode	0x03
Byte 2	Anzahl Datenbytes	0x02
Byte 3, 4	Daten	0x0047
Byte 7, 8	CRC16 Checksumme	0x81B6

Modbus-Register schreiben (Parametrierung)

Mit dem Modbus-Befehl 0x10 (mehrere Register setzen) können Register im Gerät verändert werden. Parameter-Register liegen ab Adresse 3000 vor. Der Inhalt der Register kann der Tabelle auf Seite 44 entnommen werden.

Befehl des Masters an das ISOMETER® 7.2.1

In diesem Beispiel wird bei dem ISOMETER® mit Adresse 3 der Inhalt der Register-Adresse 3003 auf 2 gesetzt.

Byte	Name	Beispiel
Byte 0	ISOMETER® Modbus-Adresse	0x03
Byte 1	Funktionscode	0x10
Byte 2, 3	Startregister	0x0BBB
Byte 4, 5	Anzahl der Register	0x0001
Byte 6	Anzahl Datenbytes	0x02
Byte 7, 8	Daten	0x0002
Byte 9, 10	CRC16 Checksumme	0x9F7A

7.2.2 Antwort des ISOMETER®s an den Master

Byte	Name	Beispiel
Byte 0	ISOMETER® Modbus-Adresse	0x03
Byte 1	Funktionscode	0x10
Byte 2, 3	Startregister	0x0BBB
Byte 4, 5	Anzahl der Register	0x0001
Byte 6, 7	CRC16 Checksumme	0x722A

7.3 Exception-Code

Kann eine Anfrage aus irgendwelchen Gründen nicht beantwortet werden, sendet das ISOMETER® einen sogenannten Exception-Code, mit dessen Hilfe der mögliche Fehler eingegrenzt werden kann.

Exception- Code	Beschreibung
0x01	Unzulässige Funktion
0x02	Unzulässiger Datenzugriff
0x03	Unzulässiger Datenwert
0x04	Interner Fehler
0x05	Annahmebestätigung (Antwort kommt zeitverzögert)
0x06	Anfrage nicht angenommen (ggf. Anfrage wiederholen)

7.3.1 Aufbau des Exception-Codes

Byte	Name	Beispiel
Byte 0	ISOMETER® Modbus-Adresse	0x03
Byte 1	Funktionscode (0x03) + 0x80	0x83
Byte 2	Daten (Exception-Code)	0x04
Byte 3, 4	CRC16 Checksumme	0xE133

8. Modbus-Registerbelegung des ISOMETER®s

Die Information in den Registern ist je nach Gerätezustand entweder der Messwert ohne Alarm, der Messwert mit Alarm 1, der Messwert mit Alarm 2 oder nur der Gerätefehler.

Register	Messwert			Geräte-
negister	ohne Alarm	Alarm 1	Alarm 2	fehler
	R _F	R _F	R _F	
1000	Isolations-	Isolations-	Isolations-	Anschluss
bis	fehler (71)	fehler (1)	fehler (1)	Erde (102)
1003	[kein Alarm]	[Vorwarnung]	[Alarm]	[Geräte- fehler]
1004 bis 1007				
	Un	U _n	U _n	
1008	Spannung (76)	Unterspannung	Überspannung	Anschluss
bis	[kein Alarm]	(77)	(78)	Netz (101)
1011		[Alarm]	[Alarm]	[Geräte- fehler]
1012 bis 1015	C _e Netzableit- kapazität (82) [kein Alarm]			
1016 bis 1019	U _{L1e} Spannung (76) [kein Alarm]			

Register	Messwert			Geräte-
negistei	ohne Alarm	Alarm 1	Alarm 2	fehler
1020 bis 1023	U_{L2e} Spannung (76) [kein Alarm]			
1024 bis 1027	Fehlerort in % (1022) [kein Alarm]			
1028 bis 1031	R _{UGF} Isolationsfeh- Ier (71) [kein Alarm]			
1032 bis 1035	Messwert- Aktualisie- rungszähler - (1022) [kein Alarm]			Geräte- fehler (115) [Geräte- fehler]

^{() =} Kanalbeschreibungs-Code (siehe Kapitel 8.2)

^{[] =} Alarm-Typ (siehe Kapitel 8.1.2.2)

Register	Eigen- schaft	Beschreibung	Format	Ein- heit	Wertebereich
999	RO	Anzahl der Mod- bus-Messwertka- näle mit aktivem Alarm	UINT 16		03
3000	RW	Reserviert			
3001	RW	Reserviert			
3002	RW	Reserviert			
3003	RW	Reserviert			
3004	RW	Reserviert			
3005	RW	Voralarmwert Widerstandsmes- sung "R1"	UINT 16	kΩ	R2 500
3006	RW	Reserviert			
3007	RW	Alarmwert Wider- standsmessung "R2"	UINT 16	kΩ	1 R1
3008	RW	Aktivierung Alarmwert Unter- spannung "U<" Alarmwert Unter-	UINT 16		0 = Inaktiv 1 = Aktiv
3009	RW	spannung "U<"	UINT 16	V	30 U>
3010	RW	Aktivierung Alarmwert Über- spannung "U>"	UINT 16		0 = Inaktiv 1 = Aktiv
3011	RW	Alarmwert Überspannung "U >"	UINT 16	V	U< 1,15k

Register	Eigen- schaft	Beschreibung	Format	Ein- heit	Wertebereich
3012	RW	Memoryfunktion für Alarmmeldun- gen (Fehlerspeicher) "M"	UINT 16		0 = Inaktiv 1 = Aktiv
3013	RW	Arbeitsweise Relais 1 "r1"	UINT 16		0 = n.o. 1 = n.c.
3014	RW	Arbeitsweise Relais 2 "r2"	UINT 16		0 = n.o. 1 = n.c.
3015	RW	Busadresse "Adr"	UINT 16		0/3 90
3016	RW	Baudrate "Adr 1"	UINT 16		0 = BMS 1 = 1,2 k 2 = 2,4 k 3 = 4,8 k 4 = 9,6 k 5 = 19,2 k 6 = 38,4 k 7 = 57,6 k 8 = 115,2 k
3017	RW	Parität "Adr 2"	UINT 16		0 = 8N1 1 = 8O1 2 = 8E1 3 = 8N2
3018	RW	Anlaufverzöge- rung "t" bei Gerä- testart	UINT 16	S	010
3019	RW	Ansprechverzö- gerung "ton" für Relais K1 und K2	UINT 16	S	0 99

Register	Eigen- schaft	Beschreibung	Format	Ein- heit	Wertebereich
3020	RW	Rückfallverzöge- rung "toff" für Relais K1 und K2	UINT 16	S	0 99
3021	RW	Wiederholzeit "test" für automa- tischen Gerätetest	UINT 16		0 = OFF 1 = 1 h 2 = 24 h
3022	RW	Reserviert			
3023	RW	Reserviert			1
3024 3025	RW	Überprüfung Netzanschluss bei Gerätetest "nEt"	UINT 16		0 = Inaktiv 1 = Aktiv 0 = Inaktiv
3023	1111	Gerätestart 'S.Ct'	Olivi 10		1 = Aktiv
3026	RW	Stop-Mode anfor- dern (0 = Geräte deaktivieren)	UINT 16		0 = Stop 1 =
3027	RW	Meldezuordnung Relais 1 "r1"	UINT 16		Bit 9 Bit 1
3028	RW	Meldezuordnung Relais 2 "r2"	UINT 16		Bit 9 Bit 1
8003	WO	Werksein- stellung für alle Parameter	UINT 16		0x6661 "fa"

Register	Eigen- schaft	Beschreibung	Format	Ein- heit	Wertebereich
8004	WO	Werksein- stellung nur für die durch FAC zurücksetzbaren Parameter	UINT 16		0x4653 "FS"
8005	WO	Gerätetest starten	UINT 16		0x5445 "TE"
8006	WO	Fehlerspeicher löschen	UINT 16		0x434C "CL"
9800 bis 9809	RO	Gerätename	UNIT 16 (ASCII) - siehe Kapitel 8.1.1		
9820	RO	Software- Identnummer	UINT 16		
9821	RO	Software- Versionsnummer	UINT 16		
9822	RO	Software- Version: Jahr	UINT 16		
9823	RO	Software- Version: Monat	UINT 16		
9824	RO	Software- Version: Tag	UINT 16		
9825	RO	Modbus Treiber Version	UINT 16		

 $RW = Read/Write; \quad RO = Read \ only; \quad WO = Write \ only$

8.1 Gerätespezifische Datentypen des ISOMETER®s

8.1.1 Gerätename

Nachfolgend wird das Datenformat des Gerätenamens angegeben.

Word 0x00	0x01	0x02	0x03		0x08	0x09			
			In	igesamt 10 Words					
	Jedes Word enthält zwei ASCII-Zeichen								

8.1.2 Messwerte

Jeder Messwert liegt als Kanal vor und besteht aus 8 Bytes (4 Registern). Die erste Messwert-Registeradresse ist 1000. Die Struktur eines Kanals ist immer gleich. Inhalt und Anzahl sind geräteabhängig. Der Aufbau eines Kanals am Beispiel von Kanal 1:

10	000	10	001	10	02	1003		
HiByte	LoByte	HiByte	LoByte	HiByte	LoByte	HiByte	LoByte	
				Alarm-	Bereich			
GI	eitkomma	owort (Elo	a+\	Typ und	und Ein-	Kai	nal-	
Gi	enkommi	awert (FIO	at)	Test-Art	heit	beschr	eibung	
				(AT&T)	(R&U)			

8.1.2.1 Float = Gleitkommawerte der Kanäle

Word								0×	(00)														0х	:01							
Byte		HiByte LoByte							HiByte LoByte																							
Bit	31	30						24	23	22						16	15							8	7							0
	S	E	E	E	E	Е	Ε	E	E	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Μ	М	М

Darstellung der Bitfolge für die Verarbeitung analoger Messwerte nach IEEE 754

S = Vorzeichen

E = Exponent

M = Mantisse

8.1.2.2 AT&T = Alarm-Typ und Test-Art (intern/extern)

Bit	7	6	5	4	3	2	1	0	Bedeutung
	Test extern	Test intern	Reserviert	Reserviert	Reserviert	Alarm	Fehler		
	Х	Х	Х	Х	Х	0	0	0	Kein Alarm
	Χ	Х	Х	Χ	Х	0	0	1	Vorwarnung
Alarm-Typ	0	0	Х	Х	Х	0	1	0	Gerätefehler
Alarn	Х	Х	Х	Х	Х	0	1	1	Reserviert
	Х	Х	Х	Х	Х	1	0	0	Warnung
	Χ	Х	Х	Х	Х	1	0	1	Alarm
	Х	Х	Х	Х	Х	1	1	0	Reserviert
	Х	Х	Х	Х	Х				Reserviert
	Х	Х	Х	Х	Х	1	1	1	Reserviert
	0	0	Х	Х	Х	Х	Χ	Х	Kein Test
Test	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Interner Test
	1	0	Х	Х	Х	Х	Χ	Х	Externer Test

Der Alarm-Typ ist durch die Bits 0 bis 2 codiert. Die Bits 3, 4 und 5 sind reserviert und haben stets den Wert 0. Bit 6 oder 7 sind gesetzt, wenn ein interner oder externer Test abgelaufen ist. Andere Werte sind reserviert. Das komplette Byte wird aus der Summe von Alarm-Typ und Test-Art errechnet.

8.1.2.3 R&U = Bereich und Einheit

Bit	7	6	5	4	3	2	1	0	Bedeutung
	-	-	-	0	0	0	0	0	Ungültig (init)
	-	ï	-	0	0	0	0	1	Keine Einheit
	-	-	-	0	0	0	1	0	Ω
	1	-	-	0	0	0	1	1	Α
	-	-	-	0	0	1	0	0	V
	1	-	-	0	0	1	0	1	%
	1	-	-	0	0	1	1	0	Hz
Ħ	-	-	-	0	0	1	1	1	Baud
Einheit	1	-	-	0	1	0	0	0	F
ⅲ	1	-	-	0	1	0	0	1	Н
	1	-	-	0	1	0	1	0	°C
	1	-	-	0	1	0	1	1	°F
	1	-	-	0	1	1	0	0	Sekunde
	-	-	-	0	1	1	0	1	Minute
	1	-	-	0	1	1	1	0	Stunde
	1	-	-	0	1	1	1	1	Tag
	1	-	-	1	0	0	0	0	Monat
ich	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Wahrer Wert
ere	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Wahrer Wert ist kleiner
tsb	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Wahrer Wert ist größer
Gültigkeitsbereich	1	1	Х	Χ	Χ	Χ	Χ	Х	Ungültiger Wert

- In den Bits 0 bis 4 ist die Einheit codiert.
- Die Bits 6 und 7 beschreiben den Gültigkeitsbereich eines Werts.
- Bit 5 ist reserviert.

Das komplette Byte wird aus der Summe von Einheit und Gültigkeitsbereich errechnet.

8.1.3 Alarmzuordnung der Relais

Jedem Relais können verschiedene Alarme zugeordnet werden. Die Zuordnung erfolgt über ein 16-Bit-Register je Relais mit den nachfolgend beschriebenen Bits. Die nachfolgende Tabelle gilt für Relais 1 und Relais 2, wobei "x" für die Nummer des Relais steht. Ein gesetztes Bit aktiviert die beschriebene Funktion.

Bit	Displayanzeige	Bedeutung
0	Reserviert	Beim Lesen immer 0
U	Reserviert	Beim Schreiben ist der Wert beliebig.
1	/L x Err	Gerätefehler E.xx
2	rx	Voralarm R1
2	+R1 < Ω	Fehler R _F an L1/+
3	rx	Voralarm R1
3	-R1 < Ω	Fehler R _F an L2/-
4	rx	Alarm R2
4	+R2 < Ω	Fehler R _F an L1/+
5	rx	Alarm R2
3	-R2 < Ω	Fehler R _F an L2/-
6	rx	Alarmmeldung U_n
O	U < V	Unterspannung
7	rx	Alarmmeldung U_n
'	U > V	Überspannung
8	rx	Manuell gestarteter Selbsttest
	test	5
9	S.AL	Gerätestart mit Alarm
10	Reserviert	Beim Lesen immer 0
		Beim Schreiben ist der Wert beliebig.
11	Reserviert	Beim Lesen immer 0
	THE SET VICIO	Beim Schreiben ist der Wert beliebig.
12	Reserviert	Beim Lesen immer 0
12	neser viere	Beim Schreiben ist der Wert beliebig.

Bit	Displayanzeige	Bedeutung
13	Reserviert	Beim Lesen immer 0 Beim Schreiben ist der Wert beliebig.
14	Reserviert	Beim Lesen immer 0 Beim Schreiben ist der Wert beliebig.
15	Reserviert	Beim Lesen immer 0 Beim Schreiben ist der Wert beliebig.

8.2 Kanalbeschreibungen

Wert	Messwertbeschreibung/ Alarmmeldung Betriebsmeldung	Bemerkung
0		
1 (0x01)	Isolationsfehler	
71 (0x47)	Isolationsfehler	Isolationswiderstand R_F in Ω
76 (0x4C)	Spannung	Messwert in V
77 (0x4D)	Unterspannung	
78 (0x4E)	Überspannung	
82 (0x52)	Kapazität	Messwert in F
86 (0x56)	Isolationsfehler	Impedanz Z _i
101 (0x65)	Anschluss Netz	
102 (0x66)	Anschluss Erde	
115 (0x73)	Gerätefehler	Störung ISOMETER®
129 (0x81)	Gerätefehler	
145 (0x91)	Eigene Adresse	

Für die Datenkonvertierung von Parametern werden Datentypbeschreibungen benötigt. Eine Darstellung von Texten ist hier nicht notwendig.

Wert	Parameter beschreibung
1023 (0x3FF)	Parameter/Messwert ungültig.
	Der Menüpunkt dieses Parameters wird nicht angezeigt.
1022 (0x3FE)	Kein Messwert/keine Meldung
1021 (0x3FD)	Messwert/Parameter inaktiv
1020 (0x3FC)	Messwert/Parameter nur vorübergehend inaktiv (z. B wäh-
	rend der Übertragung eines neuen Parameters). Anzeige im
	Menü "".
1019 (0x3FB)	Parameter/Messwert (Wert) ohne Einheit
1018 (0x3FA)	Parameter (Code Auswahlmenü) ohne Einheit
1017 (0x3F9)	String max. 18 Zeichen (z. B. Gerätetyp, - Variante,)
1016 (0x3F8)	
1015 (0x3F7)	Uhrzeit
1014 (0x3F6)	Datum: Tag
1013 (0x3F5)	Datum: Monat
1012 (0x3F4)	Datum: Jahr
1011 (0x3F3)	Registeradresse ohne Einheit
1010 (0x3F2)	Zeit
1009 (0x3F1)	Faktor Multiplikation [*]
1008 (0x3F0)	Faktor Division [/]
1007 (0x3EF)	Baudrate

9. IsoData-Datenstring

Im IsoData-Modus wird der gesamte Datenstring kontinuierlich vom ISOME-TER® mit einem Takt von ca. 1 s gesendet. Eine Kommunikation mit dem ISO-METER® ist in diesem Mode nicht möglich und es dürfen keine weiteren Sender an der RS-485-Busleitung angeschlossen sein.

IsoData ist im Menü "out", Menüpunkt "adr" aktiviert, wenn Adr = 0 eingestellt ist. In diesem Fall blinkt in der Messwertanzeige das Symbol "Adr".

String	Beschreibung	
!;	Start-Zeichen	
v;	Isolations-Fehlerort ''/'+'/'-'	
1234, 5;	Isolationswiderstand $R_{\rm F}$ [k Ω]	
1234;	Netzableitkapazität C _e [μF]	
1234, 5;	reserviert	
+1234;	Netznennspannung U _n [V _{RMS}]	
	Netznennspannungstyp: AC oder unbekannt: '' DC: '+' / '-'	
+1234;	Verlagerungsspannung U_{L1e} [V _{DC}]	
+1234;	Verlagerungsspannung U_{L2e} [V _{DC}]	
+123;	Isolations-Fehlerort -100 +100 [%]	
1234, 5;	Genäherter unsymmetrischer Isolationswiderstand	
	$R_{UGF}\left[k\Omega\right]$	

String	Beschreibung
	Alarmmeldung [Hexadezimal] (ohne führendes "0x")
	Die Meldungen sind mit der ODER-Funktion in diesen Wert eingerechnet.
	Zuordnung der Meldungen:
	0x0002 Gerätefehler
	0x0004 Vorwarnung Isolationswiderstand R _F an L1/+
1234;	0x0008 Vorwarnung Isolationswiderstand R _F an L2/-
1234;	0x000C Vorwarnung Isolationswiderstand R _F symmetrisch
	0x0010 Alarm Isolationswiderstand R _F an L1/+
	0x0020 Alarm Isolationswiderstand R _F an L2/-
	0x0030 Alarm Isolationswiderstand R _F symmetrisch
	0x0040 Alarm Unterspannung U _n
	0x0080 Alarm Überspannung U _n
	0x0100 Meldung Systemtest
	0x0200 Gerätestart mit Alarm
	Aktualisierungszähler, zählt fortlaufend von 0 bis 9.
1	Er wird mit der Aktualisierung des Isolationswiderstandswerts
	erhöht.
<cr><lf></lf></cr>	String-Ende

10. Technische Daten

10.1 Tabellarische Darstellung

()* = Werkseinstellung

Isolationskoordination nach IEC 60664-1/IEC 60664-3

Definitionen:	
Versorgungskreis (IC2)	A1, A2
Ausgangskreis (IC3)	11, 14, 24
Steuerkreis (IC4)	Up, KE, T/R, A, B, AK1, GND, AK2
Bemessungsspannung	
Überspannungskategorie	
Bemessungs-Stoßspannung:	
IC2/(IC3-4)	4 kV
IC3/(IC4)	
Bemessungs-Isolationsspannung:	
IC2/(IC3-4)	250 V
IC3/(IC4)	250 V
Verschmutzungsgrad	3
Sichere Trennung (verstärkte Isolierung) zwischen:	
IC2/(IC3-4)	Überspannungskategorie III, 300 V
IC3/(IC4)	
Spannungsprüfung (Stückprüfung) nach IEC 61010.1:	
IC2/(IC3-4)	AC 2,2 kV
IC3/(IC4)	AC 2,2 kV
Versorgungsspannung	
Versorgungsspannung U _s	AC 100240 V/DC 24240 V
Toleranz von $U_{\rm s}$	
Frequenzbereich U _s	
Figenverbrauch	

Überwachtes IT-System

Netznennspannung U _n mit AGH420	3(N)AC, AC 0 690 V/DC 0 1000 V
Toleranz von U _n	AC +15 %, DC +10 %
Netznennspannungsbereich U _n mit AGH420 (UL508)	
Frequenzbereich von U_{Π}	DC, 15 460 Hz

Messkreis

Zulässige Netzableitkapazität C _ρ (isoEV425)	≤ 5 µF
Zulässige Netzableitkapazität $C_{\rm e}$ (isoEV425HC)	
Zulässige Fremdgleichspannung U_{fa} \leq	1150 V

Ansprechwerte

Ansprechwerte	
Ansprechwert R _{an1} (isoEV425)	2500 kΩ (500 kΩ)*
Ansprechwert R _{an1} (isoEV425HC)	2500 kΩ (200 kΩ)*
Ansprechwert R _{an2}	1490 kΩ (100 kΩ)*
Ansprechunsicherheit $R_{an}(C_e \le 5 \mu F)$	\pm 15 %, mindestens \pm 1 kΩ
Ansprechunsicherheit $R_{\rm an}$ ($C_{\rm e} > 5~\mu{\rm F}$ und $R_{\rm F} > 100~{\rm k}\Omega$)	\pm (5 % * R_{an} /100 kΩ +10%)
Hysterese R _{an}	
Unterspannungserkennung	30 1,14 kV (off)*
Überspannungserkennung	311,15 kV (off)*
Ansprechunsicherheit U	±5 %, mindestens ±5 V
Frequenzabhängige Ansprechunsicherheit ≥ 200 Hz	0,03 %/Hz
Hysterese U	5 %, mindestens 5 V

Zeitverhalten

Ansprechzeit t_{an} bei $R_F = 0.5 \times R_{an}$ und $C_e = 1 \mu F$ nach IEC 61557-8	≤10 s
Anlaufverzögerung t	
Ansprechverzögerung t _{on}	
Rückfallverzögerung t _{off}	099 s (0 s)*

Anzeigen, Speicher

Anzeige	. LC-Display, multifunktional, unbeleuchtet
Anzeigebereich Messwert Isolationswiderstand (R_F)	
Betriebsmessunsicherheit ($C_e \le 5 \mu F$)	\pm 15 %, mindestens \pm 1 kΩ
Betriebsmessunsicherheit ($C_{\rm e}$ > 5 $\mu {\rm F}$ und $R_{\rm F}$ >100 k Ω)	\pm (5 % * R_F /100 kΩ +10 %)

$\label{eq:continuous} \begin{tabular}{ll} Anzeigebereich Messwert Netznennspannung $(U_{\rm n})$ \\ Betriebsmessunsicherheit \\ Anzeigebereich Messwert Netzableitkapazität bei $R_{\rm F} >$ \\ Anzeigebereich Messwert Netzableitkapazität bei $R_{\rm F} >$ \\ Betriebsmessunsicherheit \\ Passwort \\ Fehlerspeicher Alarmmeldungen \\ \end{tabular}$	10 kΩ (isoE\ 10 kΩ (isoE\	/425) /425HC)	±5±5±5±15 %	%, mindestens ±5 V 10 μF 0 25 μF 6, mindestens ±2 μF off/0 999 (0, off)*
Schnittstelle Schnittstelle/Protokoll	s kbit/s), Mo	odbus RTU (ei	nstellbar), iso 20 Ω (0,25 W	Data (115,2 kbits/s) ≤1200 m . min. J-Y(St)Y 2x0.6 '), intern, zuschaltbar
Schaltglieder Schaltglieder Arbeitsweise Elektrische Lebensdauer bei Bemessungsbedingungen Kontaktdaten nach IEC 60947-5-1: Gebrauchskategorie Bemessungsbetriebsspannung Bemessungsbetriebsstrom Minimale Kontaktbelastbarkeit	AC-12 230 V	AC-14 230 V 2 A	trom/Arbeits DC-12 24V	sstrom (Ruhestrom)* . 10000 SchaltspieleDC-12 DC-12 110 V 220 V 0,2 A 0,1 A
Umwelt/EMV EMV Umgebungstemperaturen: Betrieb			' (ohne Betau	-40+70 °C

Mechanische Beanspruchung nach IEC 60721: Ortsfester Einsatz (IEC 60721-3-3) Transport (IEC 60721-3-2) Langzeitlagerung (IEC 60721-3-1)	2M4
Anschluss	
Anschlussart	Schraub- oder Federklemme
Nennstrom	≤ 10 A
Anzugsmoment	0,5 0,6 Nm (5 7 lb-in)
Leitergrößen	
Abisolierlänge	2
Starr/flexibel	
Flexibel mit Aderendhülse mit/ohne Kunststoffhülse	
Mehrleiter starr	
Mehrleiter flexibel	
Mehrleiter flexibel mit Aderendhülse ohne Kunststoffhülse	
Mehrleiter flexibel mit TWIN Aderendhülse mit Kunststoffhülse	0,25 1,5 mm²
Federklemmen:	- 10 A
Nennstrom	
Leitergrößen	
Starr	
Flexibel ohne Aderendhülse mit/ohne Kunststoffhülse	
Flexibel mit Aderendhülse mit/ohne Kunststoffhülse	
Mehrleiter flexibel mit TWIN Aderendhülse mit Kunstoffhülse	0,5 1,5 mm ²
Öffnung Skraft	
Testöffnung, Durchmesser	
verurantung der kiemmen op, Akri, divb, Akzsiene technische be	ILCII AGI 1420, NUDIIK "AIISCIIIUSS

Sonstiges

Betriebsart	Dauerbetrieb
Einbaulage	Kühlschlitze müssen senkrecht durchlüftet werden
Schutzart Einbauten (DIN EN 60529)	IP30
Schutzart Klemmen (DIN EN 60529)	IP20
Gehäusematerial	Polycarbonat
Schnellbefestigung auf Hutprofilschiene	IEC 60715
Schraubbefestigung	2 x M4 mit Montageclip
Gewicht	≤ 150 g

Technische Daten AGH420

Isolationskoordination nach IEC 60664-1/IEC 60664-3

Definitionen:	
Messkreis (IC1)	L1/+, L2/-
Steuerkreis (IC2)	AK1, GND, AK2, Up, E
Bemessungsspannung	1000 V
Überspannungskategorie	
Bemessungs-Stoßspannung:	
IC1/(IC2)	8 kV
Bemessungs-Isolationsspannung:	
IC1/(IC2)	1000 V
Verschmutzungsgrad	3
Sichere Trennung (verstärkte Isolierung) zwischen:	
IC1/(IC2)	Überspannungskategorie III, 1000 V

Überwachtes IT-System

Netznennspannungsbereich U _n	AC/DC 0 1000 V
Toleranz von U _n	AC/DC +10 %
Netznennspannungsbereich $U_{\rm n}$ (UL508)	

Messkreis

$\begin{array}{ll} \operatorname{Messspannung} U_{\mathrm{m}} & & \\ \operatorname{Messstrom} I_{\mathrm{m}} \operatorname{bei} R_{\mathrm{F}} & & \\ \operatorname{Innenwiderstand} \operatorname{DC} R_{\mathrm{i}} & & & \\ \end{array}$	≤ 400 μA
Umwelt/EMV	
EMV	IEC 61326-2-4
Umgebungstemperaturen:	
Betrieb	40+70 ℃
Transport	40+85 °C
Lagerung	40+70°C
Klimaklassen nach IEC 60721:	
Ortsfester Einsatz (IEC 60721-3-3)	3K7 (ohne Betauung und Eisbildung)
Transport (IEC 60721-3-2)	2K4 (ohne Betauung und Eisbildung)
Langzeitlagerung (IEC 60721-3-1)	1K5 (ohne Betauung und Eisbildung)
Mechanische Beanspruchung nach IEC 60721:	
Ortsfester Einsatz (IEC 60721-3-3)	
Transport (IEC 60721-3-2)	
Langzeitlagerung (IEC 60721-3-1)	1M12
Anschluss	
Anschlussart	Schraub- oder Federklemme
Schraubklemmen:	
Nennstrom	≤ 10 A
Anzugsmoment	0,5 0,6 Nm (5 7 lb-in)
Leitergrößen	AWG 24-12
Abisolierlänge	8 mm
Starr/flexibel	
Flexibel mit Aderendhülse mit/ohne Kunststoffhülse	0,252,5 mm ²
Mehrleiter starr	
Mehrleiter flexibel	, ,
Mehrleiter flexibel mit Aderendhülse ohne Kunststoffhülse	, , ,
Mehrleiter flexibel mit TWIN Aderendhülse mit Kunststoffhülse	0,25 1,5 mm ²

Federklemmen:

Nennstrom	
Leitergrößen	AWG 24-14
Abisolierlänge	
Starr	0,22,5 mm ²
Flexibel mit Aderendhülse ohne Kunststoffhülse	0,752,5 mm ²
Flexibel mit Aderendhülse mit Kunststoffhülse	0,252,5 mm ²
Mehrleiter flexibel mit TWIN Aderendhülse mit Kunststoffhül:	se
Öffnungskraft	50 N
Testöffnung, Durchmesser	2,1 mm
Anschlussart	
Einzelleitungen für Klemmen Up, AK1, GND, AK2:	
Leitungslängen	≤ 0,5 m
Anschlussvermögen	
Sonstiges	
Betriebsart	Dauerbetrieh
Einbaulage	
Abstand zu benachbarten Geräten ab $U_{\rm n} > 800 \rm V$	
Schutzart Einbauten (DIN EN 60529)	
Schutzart Klemmen (DIN EN 60529)	
Gehäusematerial	
Schnellbefestigung auf Hutprofilschiene	
Schraubbefestigung	
Gewicht	
	= 130 y

10.2 Normen, Zulassungen und Zertifizierungen

Das ISOMETER® wurde unter Beachtung folgender Normen entwickelt:

- DIN EN 61557-8 (VDE 0413-8): 2015-45/Ber1: 2016-12
- IEC 61557-8:2014/COR1: 2016

Änderungen vorbehalten! Die angegebenen Normen berücksichtigen die bis zum 03.2019 gültige Ausgabe, sofern nicht anders angegeben.

10.3 Bestellangaben

Тур	Automatischer Selbsttest	c Al us	C UL US	ArtNr.
isoEV425- D4-4 mit AGH420	aktiviert	ja	ja	B71036401
isoEV425- D4-4 mit AGH420	aktiviert	ja	ja	B91036401
isoEV425HC -D4-4 mit AGH420	aktiviert	nein	ja	B71036397
isoEV425- D49-4 mit AGH420	deaktiviert	nein	ja	B71036392
	für Schraub- Stück je Gerät)			B98060008

INDEX

Α

AGH420	Gerätemerkmale 14
- Technische Daten 63	Gesamtansprechzeit 21
Anlaufverzögerung 22	
Anschluss 25, 27	Н
Anschlussüberwachung 19	Historienspeicher 23, 38
Ansprecheigenzeit 21	
Ansprechverzögerungzeit 21	I
Ansprechzeiten 20	Inbetriebnahme 25, 29
·	IsoData
В	- Datenstring 57
Bedienung 30	
Benutzungshinweise 6	К
Bestellangaben 67	Konfiguration
	- Fehlerspeicher 35
D	- Funktion 37
Datenzugriff	- Relais Arbeitsweise 34
- BMS 40	- Schnittstellen 36
- Modbus RTU 41	- Zeit 37
Display-Elemente 31	
	М
F	Meldezuordnung der Alarmrelais K1/K2 20
Fehlercodes 17	Menü
Fehlerspeicher 22	- "AL" 33
Funktionsbeschreibung 15	- "out" 34
Funktionsstörung 19	- "SEt" 37
	- "t" 37
	- Ühersicht 32

G

Menü "AL"

- Ansprechwerteinstellung 33

Menü "out" 34

- Konfiguration 34
- Relais-Meldezuordnung 34

Menü-Übersicht 32

 $Messwert anzeige \ und \ Historien speicher \ \ 38$

Messzeiten 20

Modbus

- Funktionscode 41
- Registerbelegung 44

Montage 25

Ρ

Passwortschutz 22

R

Reset-Taste T/R 22 Rückfallverzögerungzeit 21

S

Schnittstelle/Protokolle

- -BMS 23
- IsoData 23
- Modbus RTU 23

Selbsttest 17

- Automatisch 18
- Manuell 19

Т

Technische Daten 59

U

Überwachung

- Isolationswiderstand 16
- Unter- bzw. Überspannung 16

W

Werkseinstellung 22

Bender GmbH & Co. KG

Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de

Web: http://www.bender.de

